Inst ToolsInst ToolsInst Tools
  • Ask
  • Courses
  • Videos
  • Q & A
    • Interview
      • Instrumentation
      • Electronics
      • Electrical
      • Practical Questions
    • MCQ
      • Instrumentation MCQ
      • Electrical MCQ
      • Electronics MCQ
      • Control Systems MCQ
      • Analog Electronics MCQ
      • Digital Electronics MCQ
      • Power Electronics MCQ
      • Microprocessor MCQ
      • Multiple Choice Questions
  • EE
    • Electronics
      • Electronics Q & A
      • Electronic Basics
      • Electronic Devices & Circuits
      • Electronics Animation
      • Digital Electronics
    • Electrical
      • Electrical Basics
      • Electrical Q & A
      • Power Electronics
      • Electrical Machines
      • Electrical Animation
      • Power Systems
      • Switchgear & Protection
      • Transmission & Distribution
  • Measure
    • Control Valves
    • Calibration
    • Temperature
    • Pressure
    • Flow
    • Level
    • Analyzers
    • Switches
    • Vibration
    • Solenoid Valve
  • Control
    • PLC Tutorials
    • Control Systems
    • Safety Instrumented System (SIS)
    • Communication
    • Fire & Gas System
  • More
    • Design
    • Tools
    • Animation
    • Basics
    • Formulas
    • Standards
    • TextBooks
    • Common
    • Software
    • Excel Tools
    • Erection & Commissioning
    • Process Fundamentals
    • Videos
    • Books
Search
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Reading: Exhaust Fan Control: Example of PLC Timer Programming
Share
Notification Show More
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Courses
  • PLC Tutorials
  • Control Systems
Search
  • Ask
  • Courses
  • Videos
  • Q & A
    • Interview
    • MCQ
  • EE
    • Electronics
    • Electrical
  • Measure
    • Control Valves
    • Calibration
    • Temperature
    • Pressure
    • Flow
    • Level
    • Analyzers
    • Switches
    • Vibration
    • Solenoid Valve
  • Control
    • PLC Tutorials
    • Control Systems
    • Safety Instrumented System (SIS)
    • Communication
    • Fire & Gas System
  • More
    • Design
    • Tools
    • Animation
    • Basics
    • Formulas
    • Standards
    • TextBooks
    • Common
    • Software
    • Excel Tools
    • Erection & Commissioning
    • Process Fundamentals
    • Videos
    • Books
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools> Blog> PLC Tutorials> Exhaust Fan Control: Example of PLC Timer Programming

Exhaust Fan Control: Example of PLC Timer Programming

When the stove is ON, the exhaust fan control logic will be activated and then remain ON for 1 minute even after the stove is OFF.

Last updated: April 29, 2024 11:18 am
Editorial Staff
PLC Tutorials
1 Comment
Share
6 Min Read
SHARE

This article talks about the simple exhaust fan control logic using the PLC timers.

Contents
Exhaust Fan ControleLearning PLC Training CoursesInputs/OutputsExample of PLC Timer ProgrammingExplanation of ProgramSimulationWhen the Start Button (I0.0) is turned ONWhen the Start Button (I0.0) is turned OFF

Note: This example program is for education purposes and for practicing PLC programming.

Exhaust Fan Control

Problem Statement:

Design a PLC ladder logic for the following application.

We are using one toggle switch to control the Stove and Exhaust Fan.

When the Stove is turned ON, the exhaust fan will be turned ON and it remains ON for 1 minute after the Stove is turned OFF.

eLearning PLC Training Courses

Inst Tools provides free eLearning PLC training courses for engineering students to learn about programmable logic controllers.

Inputs/Outputs

Digital Inputs:

Start Button: I0.0

Digital Outputs:

Stove: Q0.0

Exhaust Fan: Q0.1

Example of PLC Timer Programming

Exhaust Fan Control

Explanation of Program

We have used Normally Open Contact for the Start Button (I0.0) and Stove (Q0.0).

In Rung 0:

  • Normally Open Contact is used for the Start Button (I0.0) to Turn ON the output Stove(Q0.0).

In Rung 1:

  • Normally Open Contact is used for the Stove (Q0.0) to Turn ON the output Exhaust Fan (Q0.1).
  • TOF timer is used to delay the turning OFF time of the output Exhaust Fan (Q0.1) for some time.

So, When the Start Button (I0.0) is turned ON, the output Stove (Q0.0) will turn ON as Normally Open Contact used for the Start Button (I0.0) will be in True State and will pass the signal to the output Stove (Q0.0) and the output stove (Q0.0) will turn ON.

When the output Stove (Q0.0) turns ON in Rung0, Normally Open Contact used for the Stove in Rung1 will be in True State and allow the signal to flow through it and the output (Q0.1) Exhaust Fan will turn ON.

The output Stove (Q0.0) will turn OFF when the Start Button (I0.0) is turned OFF as Normally Open Contact used for the Start Button (I0.0) will be in a false state and does not allow the signal to flow through it.

When the output Stove (Q0.0) is turned OFF in Rung0, Normally Open Contact used for the Stove in Rung1 will be in a False State and will not pass the signal to the output Exhaust Fan (Q0.1).

The output Exhaust Fan (Q0.0) will turn OFF but after 60 seconds as the Timer Function Block type TOF is used to delay the turning OFF time of the output Exhaust Fan (Q0.1).

The time is set to 60 seconds. So when the output Stove (Q0.0) turns OFF after 60 seconds the output Exhaust Fan (Q0.1) will turn OFF.

Simulation

Let’s simulate our logic and see the results.

When the Start Button (I0.0) is turned ON

In Rung0, When the Start Button (I0.0) is turned ON, the output Stove (Q0.0) will turn ON as Normally Open Contact used for the Start Button (I0.0) will be in True State and will pass the signal to the output Stove (Q0.0) and the output stove (Q0.0) will turn ON.

Example of PLC Timer Programming

When the output Stove (Q0.0) turns ON in Rung0, Normally Open Contact used for the Stove in Rung1 will be in True State and allow the signal to flow through it and the output (Q0.1) Exhaust Fan will turn ON.

When the Start Button (I0.0) is turned OFF

The output Stove (Q0.0)  will turn OFF when the Start Button (I0.0) is turned OFF as Normally Open Contact used for the Start Button (I0.0) will be in a false state and does not allow the signal to flow through it.

PLC Timer Practice Exercise

When the output Stove (Q0.0) is turned OFF in Rung0, Normally Open Contact used for the Stove in Rung1 will be in a False State and will not pass the signal to the output Exhaust Fan (Q0.1).

When the Start Button (I0.0) is turned OFF

The output Exhaust Fan (Q0.0) will turn OFF but after 60 seconds as the Timer Function Block type TOF is used to delay the turning OFF time of the output Exhaust Fan (Q0.1). The time is set to 60 seconds. So when the output Stove (Q0.0) turns OFF after 60 seconds the output Exhaust Fan (Q0.1) will turn OFF.

If you liked this article, please subscribe to our YouTube Channel for PLC and SCADA video tutorials.

You can also follow us on Facebook and Twitter to receive daily updates.

Read Next:

  • PLC Programming to Control a Pump
  • Manufacturing Line Assembly PLC Logic
  • PLC Ladder Logic Classroom Bell System
  • Batch Mixing PLC Ladder Logic Program
  • PLC Pushbutton and Motor Ladder Logic
Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !
What is Seal-in Circuit ?
Why is RTO used in the Place of TON Timer?
PLC FBD Programming for Burglar Alarm Security System
How to Operate a Group of Induction Motors using PLC Logic?
Program Flow Control Instructions in PLC Programming
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
1 Comment
  • Murthy Chidipilli says:
    August 23, 2024 at 11:07 pm

    (%Q0.0) NC contact is false when toggle switch is off. how come the logic flow is maintained through timer to exhaust output(%Q0.1).

    Reply

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
208kSubscribersSubscribe
38kFollowersFollow

Categories

Recent Comments

  • Kamli on Top Free PLC Software
  • Guifty Shimica on Top Non-PLC Certification Courses for Automation Professionals
  • Guifty Shimica on Top Non-PLC Certification Courses for Automation Professionals
  • MIHARITSOA Aina Sitraka on Top Non-PLC Certification Courses for Automation Professionals

Related Articles

Difference Between Static and Temp Memory in Siemens TIA Portal

Difference Between Static and Temp Memory in Siemens PLC TIA Portal

PLC Program to Energize & De-energize the Outputs based on Events

PLC Energize or De-energize the Outputs based on Events

PLC Star-Delta starter with interlock

Schneider PLC Example Program for Star-Delta System

What is an Electromechanical Relay

Difference Between Solid State Relay and Electromechanical Relay

Shutdown Motors in Timed Operation PLC Program

Shutdown Motors in Timed Operation PLC Program

PLC Interlock Example

PLC Interlock Logic with First Input Priority

PLC Batch System for 4 Tanks Mixing using CX-Programmer

PLC Batch System for 4 Tanks Mixing using CX-Programmer

PLC-based mail box automation

PLC Program for Mailbox with Letter Counting & Light Indicators

More Articles

Pressure Transmitter Basics

Pressure Transmitter Applications

Feedback Control Questions & Answers

Feedback Control Loop Questions & Answers

Power Electronics Objective Questions

Sequence Controller Objective Questions

high-accuracy voltmeter

Electrical Standards

Simulator in S7-1200 and S7-1500 PLC

How to Work With Simulator in S7-1200 and S7-1500 PLC?

Solve Pressure Control System Problems

Pressure Control System Problems

Synchronous Motor Starting Methods

Transmission and Distribution Interview Questions

Transmission and Distribution Interview Questions

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?