Inst ToolsInst ToolsInst Tools
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Search
  • Books
  • Software
  • Projects
  • Process
  • Tools
  • Basics
  • Formula
  • Power Plant
  • Root Cause Analysis
  • Electrical Basics
  • Animation
  • Standards
  • 4-20 mA Course
  • Siemens PLC Course
Reading: Voltage and Current Phase Relationships in an Inductive Circuit
Share
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Courses
  • Design
  • PLC
  • Interview
  • Control System
Search
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools > Blog > Electrical Theory > Voltage and Current Phase Relationships in an Inductive Circuit

Voltage and Current Phase Relationships in an Inductive Circuit

Last updated: July 30, 2018 12:44 pm
Editorial Staff
Electrical Theory
No Comments
Share
4 Min Read
SHARE

As previously stated, any change in current in a coil (either a rise or a fall) causes a corresponding change of the magnetic flux around the coil. Because the current changes at its maximum rate when it is going through its zero value at 90° (point b on Figure 1) and 270° (point d), the flux change is also the greatest at those times.

Consequently, the self-induced EMF in the coil is at its maximum (or minimum) value at these points, as shown in Figure 1. Because the current is not changing at the point when it is going through its peak value at 0° (point a), 180° (point c), and 360° (point e), the flux change is zero at those times. Therefore, the self-induced EMF in the coil is at its zero value at these points.

Voltage and Current Phase Relationships in an Inductive Circuit

Figure 1 : Current, Self-Induced EMF, and Applied Voltage in an Inductive Circuit

According to Lenz’s Law, the induced voltage always opposes the change in current. Referring to Figure 1, with the current at its maximum negative value (point a), the induced EMF is at a zero value and falling. Thus, when the current rises in a positive direction (point a to point c), the induced EMF is of opposite polarity to the applied voltage and opposes the rise in current.

Notice that as the current passes through its zero value (point b) the induced voltage reaches its maximum negative value. With the current now at its maximum positive value (point c), the induced EMF is at a zero value and rising. As the current is falling toward its zero value at 180° (point c to point d), the induced EMF is of the same polarity as the current and tends to keep the current from falling.

When the current reaches a zero value, the induced EMF is at its maximum positive value. Later, when the current is increasing from zero to its maximum negative value at 360° (point d to point e), the induced voltage is of the opposite polarity as the current and tends to keep the current from increasing in the negative direction. Thus, the induced EMF can be seen to lag the current by 90°.

The value of the self-induced EMF varies as a sine wave and lags the current by 90°, as shown in Figure 1. The applied voltage must be equal and opposite to the self-induced EMF at all times; therefore, the current lags the applied voltage by 90° in a purely inductive circuit.

If the applied voltage (E) is represented by a vector rotating in a counterclockwise direction (Figure 1b), then the current can be expressed as a vector that is lagging the applied voltage by 90°. Diagrams of this type are referred to as phasor diagrams.

Example:

A 0.4 H coil with negligible resistance is connected to a 115V, 60 Hz power source (see Figure 2). Find the inductive reactance of the coil and the current through the circuit. Draw a phasor diagram showing the phase relationship between current and applied voltage.

Coil Circuit and Phasor Diagram

Figure 2 : Coil Circuit and Phasor Diagram

Solution:

1. Inductive reactance of the coil

XL = 2πfL

XL = 2 x 3.14 x 60 x 0.4

XL = 150.7 Ω

2. Current through the circuit

inductive reactance current equation

I = 115 / 150.7

I = 0.76 amps

3. Draw a phasor diagram showing the phase relationship between current and applied voltage.

Phasor diagram showing the current lagging voltage by 90° is drawn in Figure 2b.

Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !

Continue Reading

Electric Circuit : Open & Short Circuits
Discharge and Charging of Lead-Acid Battery
Impedance in RL Circuits
Moving Iron Vane Meter Movement
Inductor
Series and Parallel Inductors
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
Leave a Comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
210kSubscribersSubscribe
38kFollowersFollow

Categories

Explore More

DC Generator
Series Resistance
Rectifiers, Forward Bias and Reverse Bias
Capacitance and Capacitive Reactance
Parallel Circuit Current Calculations
Low Voltage Air Circuit Breaker Principle
Shunt-Wound Motor Operation
Applying Kirchhoff’s Current Law

Keep Learning

Left-Hand Rule for Current-Carrying Conductors

DC Motor Theory

Inductor Principle

Inductance and Inductive Reactance

Ohm Meter Circuit

Ohm Meter

Squirrel-Cage Induction Rotor

Induction Motor

Capacitor and Symbols

Capacitance

Calculate Power in Parallel RL Circuit

Calculate Power in Parallel RL Circuit

Three Phase Transformer Connections

Three Phase Transformer Connections

Compounded DC Generator

Compound Generators

Learn More

Pulse Timer Instruction in PLC Programming

Pulse Timer Instruction in PLC Programming

Economizer

What is an Economizer? Purpose, Classification, Advantages

Introduction to MEMS (Microelectromechanical Systems)

Introduction to MEMS (Microelectromechanical Systems)

Coaxial

Fiber Optic Cable vs Coaxial Cable

Optimal Control Systems

Output Regulator & the Tracking Problem

Configure Analog Inputs and Outputs in Delta PLC

How to Configure Analog Inputs and Outputs in Delta PLC?

System Architecture in Industrial Automation

How to Design a System Architecture in Industrial Automation?

Web SCADA HMI

Web-based SCADA HMI Software

Menu

  • About
  • Privacy Policy
  • Copyright

Quick Links

  • Learn PLC
  • Helping Hand
  • Part Time Job

YouTube Subscribe

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?