Inst ToolsInst ToolsInst Tools
  • Ask
  • Courses
  • Videos
  • Q & A
    • Interview
      • Instrumentation
      • Electronics
      • Electrical
      • Practical Questions
    • MCQ
      • Instrumentation MCQ
      • Electrical MCQ
      • Electronics MCQ
      • Control Systems MCQ
      • Analog Electronics MCQ
      • Digital Electronics MCQ
      • Power Electronics MCQ
      • Microprocessor MCQ
      • Multiple Choice Questions
  • EE
    • Electronics
      • Electronics Q & A
      • Electronic Basics
      • Electronic Devices & Circuits
      • Electronics Animation
      • Digital Electronics
    • Electrical
      • Electrical Basics
      • Electrical Q & A
      • Power Electronics
      • Electrical Machines
      • Electrical Animation
      • Power Systems
      • Switchgear & Protection
      • Transmission & Distribution
  • Measure
    • Control Valves
    • Calibration
    • Temperature
    • Pressure
    • Flow
    • Level
    • Analyzers
    • Switches
    • Vibration
    • Solenoid Valve
  • Control
    • PLC Tutorials
    • Control Systems
    • Safety Instrumented System (SIS)
    • Communication
    • Fire & Gas System
  • More
    • Design
    • Tools
    • Animation
    • Basics
    • Formulas
    • Standards
    • TextBooks
    • Common
    • Software
    • Excel Tools
    • Erection & Commissioning
    • Process Fundamentals
    • Videos
    • Books
Search
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Reading: DC Circuit Analysis Node Equations
Share
Notification Show More
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Courses
  • PLC Tutorials
  • Control Systems
Search
  • Ask
  • Courses
  • Videos
  • Q & A
    • Interview
    • MCQ
  • EE
    • Electronics
    • Electrical
  • Measure
    • Control Valves
    • Calibration
    • Temperature
    • Pressure
    • Flow
    • Level
    • Analyzers
    • Switches
    • Vibration
    • Solenoid Valve
  • Control
    • PLC Tutorials
    • Control Systems
    • Safety Instrumented System (SIS)
    • Communication
    • Fire & Gas System
  • More
    • Design
    • Tools
    • Animation
    • Basics
    • Formulas
    • Standards
    • TextBooks
    • Common
    • Software
    • Excel Tools
    • Erection & Commissioning
    • Process Fundamentals
    • Videos
    • Books
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools > Blog > Electrical Theory > DC Circuit Analysis Node Equations

DC Circuit Analysis Node Equations

Last updated: July 25, 2018 4:14 pm
Editorial Staff
Electrical Theory
No Comments
Share
4 Min Read
SHARE

All of the rules governing DC circuits that have been discussed so far can now be applied to analyze complex DC circuits. To apply these rules effectively, loop equations, node equations, and equivalent resistances must be used.

Node Equations

Kirchhoff’s current law, as previously stated, says that at any junction point in a circuit the current arriving is equal to the current leaving. Let us consider five currents entering and leaving a junction shown as P (Figure 43). This junction is also considered a node.

Assume that all currents entering the node are positive, and all currents that leave the node are negative. Therefore, I1 ,I3 , and I4 are positive, and I2 and I5 are negative. Kirchhoff’s Law also states that the sum of all the currents meeting at the node is zero. For Figure 43, Below Equation represents this law mathematically.

I1 + I2 + I3 + I4 + I5 = 0

DC Circuit Node Equations

Figure 43 Node Point

By solving node equations, we can calculate the unknown node voltages. To each node in a circuit we will assign a letter or number. In Figure 44, A, B, C, and N are nodes, and N and C are principal nodes. Principal nodes are those nodes with three or more connections. Node C will be our selected reference node.

VAC is the voltage between Nodes A and C; VBC is the voltage between Nodes B and C; and VNC is the voltage between Nodes N and C. We have already determined that all node voltages have a reference node; therefore, we can substitute VA for VAC , VB for VBC , VN for VNC.

Circuit for Node Analysis

Figure 44 Circuit for Node Analysis

Assume that loop currentsI1 and I2 leave Node N, and that I3 enters Node N (Figure 44).

From Kirchhoff’s current law:

∑ I = 0

I1 + I2 + I3 = 0

I3 = I1 + I2

Using Ohm’s Law and solving for the current through each resistor we obtain the following.

Electric Circuit Node Equations

Substitute these equations for I1 ,I2 , and I3 into Kirchhoff’s current equation yields the following.

Electric Circuit Node Equations - 1

The circuit shown in Figure 45 can be solved for voltages and currents by using the node-voltage analysis.

Node - Voltage Analysis

Figure 45 Node – Voltage Analysis

First, assume direction of current flow shown. Mark nodes A, B, C, and N, and mark the polarity across each resistor.

Second, using Kirchhoff’s current law at Node N, solve for VN.

Kirchhoff’s current law at Node

Clear the fraction so that we have a common denominator:

4VN = 3 (60 – VN) + 6 (20 – VN)

4VN= 180 – 3VN + 120 – 6VN

13VN = 300

VN = 23.077

Third, find all voltage drops and currents.

V1 = VA – VN = 60 – 23.077 = 36.923 Volts

V2 = VN = 23.077 Volts

V3 = VB – VN = 20 – 23.077 = -3.077 Volts

The negative value for V3 shows that the current flow through R3 is opposite that which was assumed and that the polarity across R3 is reversed.

I1 = V1/R1 = 36.923 / 8 = 4.65 amp

I2 = V2/R2 = 23.077 / 6 = 3.846 amp

I3 = V3/R3 = -3.077 / 4 = – 0.769 amp

The negative value for I3 shows that the current flow through R3 is opposite that which was assumed.

Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !

Recommended Articles

Magnetic Circuits
AC Generator Voltage Regulators
Shunt-Wound Motor Operation
Resistance in Parallel Circuits
How to Measure Specific Gravity of Battery
Capacitance and Capacitive Reactance
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
Leave a Comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
208kSubscribersSubscribe
38kFollowersFollow

Categories

Recent Comments

  • William Snyder on Top Non-PLC Certification Courses for Automation Professionals
  • Kamli on Top Free PLC Software
  • Guifty Shimica on Top Non-PLC Certification Courses for Automation Professionals
  • Guifty Shimica on Top Non-PLC Certification Courses for Automation Professionals

Related Articles

Transformer Efficiency and Loses Formula

Transformer Losses and Efficiency

Series-Wound DC Generator Principle

Series-Wound DC Generators

Capacitor Principle

Capacitor

current division Formula for Resistor Circuit

Current Division

Motor Rotating Magnetic Field

AC Motor Theory

Forward Bias

Rectifiers, Forward Bias and Reverse Bias

3 Phase Balanced Loads

Power in Balanced 3 Phase Loads

Batteries Connected in Parallel

Battery Operation : Series and Parallel

More Articles

Process flow diagram examples

What is Process Flow Diagram (PFD) ?

Distribution transformer

Different Types of Transformers

Search tank in Intouch Scada

Tank Filling and Emptying using Intouch Scada Script

Radiation based Level Sensor Principle

Radiation based Level Sensor Principle

Earthing Calculations

Electrical Earthing Calculations

Control Sytem Open Loop and Closed Loop

Introduction to Control System

Time Response Analysis

Design Considerations for Higher Order Systems

PLC Program for Automatic Oil and Water Separation Process

Oil and Water Separation Process using PLC Programming

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?