Inst ToolsInst ToolsInst Tools
  • Courses
  • Videos
  • Q & A
    • Interview
      • Instrumentation
      • Electronics
      • Electrical
      • Practical Questions
    • MCQ
      • Instrumentation MCQ
      • Electrical MCQ
      • Electronics MCQ
      • Control Systems MCQ
      • Analog Electronics MCQ
      • Digital Electronics MCQ
      • Power Electronics MCQ
      • Microprocessor MCQ
      • Multiple Choice Questions
  • EE
    • Electronics
      • Electronics Q & A
      • Electronic Basics
      • Electronic Devices & Circuits
      • Electronics Animation
      • Digital Electronics
    • Electrical
      • Electrical Basics
      • Electrical Q & A
      • Power Electronics
      • Electrical Machines
      • Electrical Animation
      • Power Systems
      • Switchgear & Protection
      • Transmission & Distribution
  • Measure
    • Control Valves
    • Calibration
    • Temperature
    • Pressure
    • Flow
    • Level
    • Analyzers
    • Switches
    • Vibration
    • Solenoid Valve
  • Control
    • PLC Tutorials
    • Control Systems
    • Safety Instrumented System (SIS)
    • Communication
    • Fire & Gas System
  • More
    • Design
    • Tools
    • Animation
    • Basics
    • Formulas
    • Standards
    • TextBooks
    • Common
    • Software
    • Excel Tools
    • Erection & Commissioning
    • Process Fundamentals
    • Videos
    • Books
Search
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Reading: Starting a Synchronous Motor
Share
Notification Show More
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Courses
  • PLC Tutorials
  • Control Systems
Search
  • Courses
  • Videos
  • Q & A
    • Interview
    • MCQ
  • EE
    • Electronics
    • Electrical
  • Measure
    • Control Valves
    • Calibration
    • Temperature
    • Pressure
    • Flow
    • Level
    • Analyzers
    • Switches
    • Vibration
    • Solenoid Valve
  • Control
    • PLC Tutorials
    • Control Systems
    • Safety Instrumented System (SIS)
    • Communication
    • Fire & Gas System
  • More
    • Design
    • Tools
    • Animation
    • Basics
    • Formulas
    • Standards
    • TextBooks
    • Common
    • Software
    • Excel Tools
    • Erection & Commissioning
    • Process Fundamentals
    • Videos
    • Books
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools > Blog > Electrical Theory > Starting a Synchronous Motor

Starting a Synchronous Motor

Last updated: August 6, 2018 9:42 pm
Editorial Staff
Electrical Theory
No Comments
Share
3 Min Read
SHARE

A synchronous motor may be started by a DC motor on a common shaft. When the motor is brought to synchronous speed, AC current is applied to the stator windings. The DC motor now acts as a DC generator and supplies DC field excitation to the rotor of the synchronous motor. The load may now be placed on the synchronous motor.

Synchronous motors are more often started by means of a squirrel-cage winding embedded in the face of the rotor poles. The motor is then started as an induction motor and brought to ~95% of synchronous speed, at which time direct current is applied, and the motor begins to pull into synchronism. The torque required to pull the motor into synchronism is called the pull-in torque.

As we already know, the synchronous motor rotor is locked into step with the rotating magnetic field and must continue to operate at synchronous speed for all loads. During no-load conditions, the center lines of a pole of the rotating magnetic field and the DC field pole coincide (Figure 1a). As load is applied to the motor, there is a backward shift of the rotor pole, relative to the stator pole (Figure 1b). There is no change in speed. The angle between the rotor and stator poles is called the torque angle (α).

Starting a Synchronous Motor

Figure 1 : Torque Angle

If the mechanical load on the motor is increased to the point where the rotor is pulled out of synchronism (α≅90°), the motor will stop. The maximum value of torque that a motor can develop without losing synchronism is called its pull-out torque.

Field Excitation

For a constant load, the power factor of a synchronous motor can be varied from a leading value to a lagging value by adjusting the DC field excitation (Figure 2). Field excitation can be adjusted so that PF = 1 (Figure 2a). With a constant load on the motor, when the field excitation is increased, the counter EMF (VG) increases. The result is a change in phase between stator current (I) and terminal voltage (VG), so that the motor operates at a leading power factor (Figure 2b).

Synchronous Motor Field Excitation

Figure 2 : Synchronous Motor Field Excitation

VP in Figure 2 is the voltage drop in the stator winding’s due to the impedance of the windings and is 90° out of phase with the stator current. If we reduce field excitation, the motor will operate at a lagging power factor (Figure 2c). Note that torque angle, α, also varies as field excitation is adjusted to change power factor.

Synchronous motors are used to accommodate large loads and to improve the power factor of transformers in large industrial complexes.

Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !

Continue Reading

Power Triangle
Parallel Open Circuit Faults
Capacitance and Capacitive Reactance
Series – Parallel Circuit Analysis
How to Measure Specific Gravity of Battery
Series and Parallel Capacitors
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
Leave a Comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
208kSubscribersSubscribe
38kFollowersFollow

Categories

Explore More

Induction Motor Torque Versus Slip
3-Wire, Three-Phase Delta Wiring System
Motor Controllers
Transformer Mutual Induction
Batteries
Compound Generators
Full-Wave Rectifier Circuit
Single Line Diagram
Single Phase Power Wiring Schemes
Types of Batteries

Keep Learning

Parallel Circuit Parallel Current Calculations

Parallel Circuit Current Calculations

Compounded DC Generator

Parallel AC Generators

Battery Interview QuBattery Interview Question and Answersestion and Answers

Battery Terminology

Properties of Conducting Materials

Resistivity

Moving Iron Vane Meter Movement

Moving Iron Vane Meter Movement

DC Machine

DC Generator Internal Losses

Simple RC Circuit

Impedance in RC Circuits

Three Phase Wattmeter principle

Ampere Hour Meter

Discover More

PLC Programming Limit Switch

PLC Programming Example using Limit Switch

Flow Switch Working

Flow Switch : What is it? – Applications

Instrumentation and Control (I&C) Design

Instrumentation and Control (I&C) Design

PLC Program for Blinking Lamp on 5 Seconds Interval

PLC Program for Blinking Lamp on 5 Seconds Interval

valve actuator yoke

Disassembly of Sliding-stem Control Valve

Shockley Diode Working Principle

Shockley Diode Working Principle

AC Generator Operation

AC Generator Theory

direct and reverse acting PID controller Tuning

Recognizing an Over-Tuned PID Controller by Phase Shift

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?