Inst ToolsInst ToolsInst Tools
  • Courses
  • Videos
  • Q & A
    • Interview
      • Instrumentation
      • Electronics
      • Electrical
      • Practical Questions
    • MCQ
      • Instrumentation MCQ
      • Electrical MCQ
      • Electronics MCQ
      • Control Systems MCQ
      • Analog Electronics MCQ
      • Digital Electronics MCQ
      • Power Electronics MCQ
      • Microprocessor MCQ
      • Multiple Choice Questions
  • EE
    • Electronics
      • Electronics Q & A
      • Electronic Basics
      • Electronic Devices & Circuits
      • Electronics Animation
      • Digital Electronics
    • Electrical
      • Electrical Basics
      • Electrical Q & A
      • Power Electronics
      • Electrical Machines
      • Electrical Animation
      • Power Systems
      • Switchgear & Protection
      • Transmission & Distribution
  • Measure
    • Control Valves
    • Calibration
    • Temperature
    • Pressure
    • Flow
    • Level
    • Analyzers
    • Switches
    • Vibration
    • Solenoid Valve
  • Control
    • PLC Tutorials
    • Control Systems
    • Safety Instrumented System (SIS)
    • Communication
    • Fire & Gas System
  • More
    • Design
    • Tools
    • Animation
    • Basics
    • Formulas
    • Standards
    • TextBooks
    • Common
    • Software
    • Excel Tools
    • Erection & Commissioning
    • Process Fundamentals
    • Videos
    • Books
Search
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Reading: Compound Generators
Share
Notification Show More
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Courses
  • PLC Tutorials
  • Control Systems
Search
  • Courses
  • Videos
  • Q & A
    • Interview
    • MCQ
  • EE
    • Electronics
    • Electrical
  • Measure
    • Control Valves
    • Calibration
    • Temperature
    • Pressure
    • Flow
    • Level
    • Analyzers
    • Switches
    • Vibration
    • Solenoid Valve
  • Control
    • PLC Tutorials
    • Control Systems
    • Safety Instrumented System (SIS)
    • Communication
    • Fire & Gas System
  • More
    • Design
    • Tools
    • Animation
    • Basics
    • Formulas
    • Standards
    • TextBooks
    • Common
    • Software
    • Excel Tools
    • Erection & Commissioning
    • Process Fundamentals
    • Videos
    • Books
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools > Blog > Electrical Theory > Compound Generators

Compound Generators

Last updated: July 28, 2018 1:58 pm
Editorial Staff
Electrical Theory
No Comments
Share
3 Min Read
SHARE

Series-wound and shunt-wound generators have a disadvantage in that changes in load current cause changes in generator output voltage. Many applications in which generators are used require a more stable output voltage than can be supplied by a series-wound or shuntwound generator. One means of supplying a stable output voltage is by using a compound generator.

The compound generator has a field winding in parallel with the generator armature (the same as a shunt-wound generator) and a field winding in series with the generator armature (the same as a series-wound generator) (Figure 12).

Compounded DC Generator

Figure 12 : Compounded DC Generator

The two windings of the compounded generator are made such that their magnetic fields will either aid or oppose one another. If the two fields are wound so that their flux fields oppose one another, the generator is said to be differentially-compounded. Due to the nature of this type of generator, it is used only in special cases and will not be discussed further in this text.

If the two fields of a compound generator are wound so that their magnetic fields aid one another, the generator is said to be cumulatively-compounded. As the load current increases, the current through the series field winding increases, increasing the overall magnetic field strength and causing an increase in the output voltage of the generator. With proper design, the increase in the magnetic field strength of the series winding will compensate for the decrease in shunt field strength.

Therefore, the overall strength of the combined magnetic fields remains almost unchanged, so the output voltage will remain constant. In reality, the two fields cannot be made so that their magnetic field strengths compensate for each other completely. There will be some change in output voltage from the no-load to full-load conditions.

In practical compounded generators, the change in output voltage from no-load to full-load is less than 5 percent. A generator with this characteristic is said to be flat-compounded (Figure 13).

Voltage versus Current for a Compounded DC Generator

Figure 13 : Voltage-vs-Current for a Compounded DC Generator

For some applications, the series winding is wound so that it overcompensates for a change in the shunt field. The output gradually rises with increasing load current over the normal operating range of the machine. This type of generator is called an over-compounded generator.

The series winding can also be wound so that it under-compensates for the change in shunt field strength. The output voltage decreases gradually with an increase in load current. This type of generator is called an under-compounded generator.

Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !

Continue Reading

Series Open Circuit Faults
Battery Terminology
Power Triangle
Starting of DC Motors
Power in Balanced 3 Phase Loads
AC Generator Parts
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
Leave a Comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
208kSubscribersSubscribe
38kFollowersFollow

Categories

Explore More

Transformer Coil Polarity
Electro-Dynamo Meter Movement
Applying Kirchhoff’s Current Law
Three Phase Transformer Connections
Impedance in RLC Circuits
What is a circuit breaker ?
Calculate Power in Parallel RC Circuit
Three Phase Systems
Transformer Impedance Ratio
Power Factor Meter Principle

Keep Learning

Transformer Efficiency and Loses Formula

Transformer Losses and Efficiency

Schematic Diagram

Schematic Diagram

Capacitors Connected in Parallel

Series and Parallel Capacitors

Single Phase Motor Manual Controller

Motor Controllers

Properties of Conducting Materials

Resistivity

Two Wattmeters to Measure 3 Phase Power

Three Phase Wattmeter

Calculate Power in Parallel RL Circuit

Calculate Power in Parallel RL Circuit

Resistor Y and Delta Network Calculation

Y and Delta Resistor Network Calculations

Discover More

IS Loop Formula

Difference between Intrinsic Safe and Non-Intrinsic Safe Cables

Steam Generator Parts

Parts and functions of Steam Turbine

Control Valves - Repeat Actuator Diaphragm Bursts

Control Valves – Repeat Actuator Diaphragm Bursts

Fieldbus Pressure Transmitter Configuration

Foundation Fieldbus Pressure Transmitter Configuration

Level Transmitter configuration in PLC

Scaling with Parameters (SCP) Instruction in PLC

Essential Dorm Room Items Every Student Should Get

The Dorm Room Essentials And Why You Need Them

What is Averaging Pitot Tube

What is an Averaging Pitot Tube? – Principle, Advantages

pressurized-water reactor

Runaway Processes

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?