Inst ToolsInst ToolsInst Tools
  • Courses
  • Videos
  • Q & A
    • Interview
      • Instrumentation
      • Electronics
      • Electrical
      • Practical Questions
    • MCQ
      • Instrumentation MCQ
      • Electrical MCQ
      • Electronics MCQ
      • Control Systems MCQ
      • Analog Electronics MCQ
      • Digital Electronics MCQ
      • Power Electronics MCQ
      • Microprocessor MCQ
      • Multiple Choice Questions
  • EE
    • Electronics
      • Electronics Q & A
      • Electronic Basics
      • Electronic Devices & Circuits
      • Electronics Animation
      • Digital Electronics
    • Electrical
      • Electrical Basics
      • Electrical Q & A
      • Power Electronics
      • Electrical Machines
      • Electrical Animation
      • Power Systems
      • Switchgear & Protection
      • Transmission & Distribution
  • Measure
    • Control Valves
    • Calibration
    • Temperature
    • Pressure
    • Flow
    • Level
    • Analyzers
    • Switches
    • Vibration
    • Solenoid Valve
  • Control
    • PLC Tutorials
    • Control Systems
    • Safety Instrumented System (SIS)
    • Communication
    • Fire & Gas System
  • More
    • Design
    • Tools
    • Animation
    • Basics
    • Formulas
    • Standards
    • TextBooks
    • Common
    • Software
    • Excel Tools
    • Erection & Commissioning
    • Process Fundamentals
    • Videos
    • Books
Search
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Reading: Why we use Wheatstone bridge in RTD?
Share
Notification Show More
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Courses
  • PLC Tutorials
  • Control Systems
Search
  • Courses
  • Videos
  • Q & A
    • Interview
    • MCQ
  • EE
    • Electronics
    • Electrical
  • Measure
    • Control Valves
    • Calibration
    • Temperature
    • Pressure
    • Flow
    • Level
    • Analyzers
    • Switches
    • Vibration
    • Solenoid Valve
  • Control
    • PLC Tutorials
    • Control Systems
    • Safety Instrumented System (SIS)
    • Communication
    • Fire & Gas System
  • More
    • Design
    • Tools
    • Animation
    • Basics
    • Formulas
    • Standards
    • TextBooks
    • Common
    • Software
    • Excel Tools
    • Erection & Commissioning
    • Process Fundamentals
    • Videos
    • Books
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools > Blog > Temperature Measurement > Why we use Wheatstone bridge in RTD?

Why we use Wheatstone bridge in RTD?

Last updated: June 13, 2020 5:54 pm
Editorial Staff
Temperature Measurement
No Comments
Share
3 Min Read
SHARE

RTD measures the temperature in function of variations of its resistance. In order to make them work (4 wire RTD), we need a low current that is called the excitation current.

Contents
RTD Bridge CircuitPotential SystemAdvantagesRead Next:

In fact, T ∝ R  and V = IR

So T ∝ V

If I and R both are variable, measuring the temperature based on voltage V will be wrong!

So, to solve this problem we can use the Wheatstone bridge with the known resistors.

That is what has been explained in BS 1041-3: “Measurements are made by passing current through a sensing resistor and measuring the potential across it. If the current is known, the potential is a measurement of the resistance and hence the temperature. If the current is not known exactly the potential may be compared with the potential across a known resistor; this is the basis of the bridge systems.”

Different arrangements of the Wheatstone bridge allow to measure the temperature in different situations with the accuracy that we need. This is something this is known as 2, 3 and 4 wires RTD sensors.

BS 1041-3 proposes that 2-wire RTDs are restricted to a maximum of 1 Ω to 2 Ω per conductor resistance and other forms of bridge (3 and 4-wire) must be used for cable runs of 10 Ω to 15 Ω per conductor (typically 1 km). In fact, 3 or 4-wire form compensate the conductor resistance and its change by changing of temperature.

RTD Bridge Circuit

For example, figure below shows a 4-wire sensor in which red and white wires cancel out blue ones. That allows the bridge to remain balanced even with long run conductors.

4-wire RTD Bridge Circuit

Potential System

In contrast to Wheatstone bridge, BS 1041-3 article 9.3 says that if an accurately-know and constant current source is used to energize the RTD, the temperature can be measured directly by a four-terminal network.

Why we use Wheatstone bridge in RTD

Figure: Simplified RTD Circuit

But in order to prevent that the current passes through voltmeter the input impedance of the potential measuring device must be significantly greater than the RTD. (For example, a 0.1 % error will result from an input impedance 1 000 times the sensor resistance. BS 1041-3)

Advantages

This method of measurement has some advantages:

1. A temperature-measurement signal in the form of a voltage is available.

2. Several sensors can be connected in series with the same current source.

3. Accurate measurements of resistance can be made if the current is accurately known.

4. Measurements are independent of conductor resistance and selector switch contact resistance.

Author: Hanif Yazdanipoor

Read Next:

  • RTD Questions and Answers
  • What is RTD Sensitivity?
  • Compare PT100 and PT1000
  • Thermowell Construction
  • RTD Temperature Error
Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !

Recommended Articles

How to calculate Thermocouple Temperature by measuring the output millivoltage
How Does an Infrared Thermometer Work?
Temperature Sensors Questions & Answers
Temperature Calibration Bath Principle
Bimetallic Thermometer
Why RTD installed after the Orifice Plate ?
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
Leave a Comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
208kSubscribersSubscribe
38kFollowersFollow

Categories

Recent Comments

  • William Snyder on Top Non-PLC Certification Courses for Automation Professionals
  • Kamli on Top Free PLC Software
  • Guifty Shimica on Top Non-PLC Certification Courses for Automation Professionals
  • Guifty Shimica on Top Non-PLC Certification Courses for Automation Professionals

Related Articles

DTS sensors

Distributed Temperature Sensors (DTS) in Power Lines

RTD with Thermowell

Temperature Sensor Accessories

Temperature Transmitter Formula

Calculate Temperature Transmitter Output

Temperature Controller

What is a Temperature Controller? – How to Choose?

Thermocouple Calculations

Thermocouple Calculations

calibrating-and-testing-rtd-sensors

RTD Calibration Procedure

Thermocouple Calculations

Free Download Thermocouple Calculator

Stability and Uniformity of Temperature Bath

Stability and Uniformity of Temperature Bath

More Articles

Diagnosing the Electric Motor Circuit

Diagnosing Electric Motor Circuit

JFET Working Animation

JFET Working Animation

U tube Manometer Working

Basics of Pressure

PLC Programming Classroom Bell System

Classroom Bell System – PLC Programming Practice Examples

Electrical Machines Questions and Answers

Alternator Voltage Regulation Quiz

Safety Questions and Answers

Safety Questions and Answers

Control Systems Questions & Answers

Control Systems Objective Questions & Answers – Set 8

Motor Slip Calculation

Electrical Motor Terms and Concepts

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?