Inst ToolsInst ToolsInst Tools
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Search
  • Books
  • Software
  • Projects
  • Process
  • Tools
  • Basics
  • Formula
  • Power Plant
  • Root Cause Analysis
  • Electrical Basics
  • Animation
  • Standards
  • 4-20 mA Course
  • Siemens PLC Course
Reading: All About Vortex Flow Meters
Share
Notification Show More
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Courses
  • Design
  • PLC
  • Interview
  • Control System
Search
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools > Blog > Flow Measurement > All About Vortex Flow Meters

All About Vortex Flow Meters

Vortex flow meters measure fluid velocity using a principle of operation referred to as the von Kármán effect to calculate the flow rate.

Last updated: November 2, 2023 1:23 pm
Editorial Staff
Flow Measurement Instrumentation Design
No Comments
Share
5 Min Read
SHARE

In this article, we shall learn about Vortex Flow Meters.

Contents
Vortex Flow MetersApplications of Vortex Flow MetersCharacteristics of Vortex Flow MetersLimitations of Vortex Flow MetersInstallationVortex Meters Operating Conditions

A vortex train is generated when a bluff body is placed in a pipe stream containing liquid or gas. This train consists of high and low-pressure areas which can be measured by a specially manufactured sensor.

Vortex flow meters measure fluid velocity using a principle of operation referred to as the von Kármán effect, which states that when flow passes by a bluff body, a repeating pattern of swirling vortices is generated.

Vortex Flow Meters

Vortex Flow Meters

In a Vortex flow meter, an obstruction in the flow path, often referred to as a shedder bar, serves as the bluff body.

The shedder bar causes process fluid to separate and form areas of alternating differential pressure known as vortices around the backside of the shedder bar.

The number of formations of these vortices depends on the flow rate, if we measure these vortices we can get the equivalent volumetric flow rate.

Also Read: Types of Vortex Sensors

Applications of Vortex Flow Meters

Vortex meters are commonly used in the following services:

  • Cooling water.
  • Process water.
  • Light hydrocarbons where large turndown is required.
  • Gas flow where large turndown is required.

Characteristics of Vortex Flow Meters

Vortex meters have the following characteristics:

  • Wide rangeability (for Reynolds numbers above 10,000).
  • An accuracy of 1 percent of the rate.
  • A wide range of sizes.
  • Linear output.
  • Availability of pulse and analog outputs.

Limitations of Vortex Flow Meters

Vortex meters have the following limitations:

  • A limited range of construction materials is available.
  • Vortex meters are generally not suitable for slurries or high-viscosity liquids.
  • Users cannot check calibration.
  • Turbulent flow is required.
  • Vortex meters have over range limitations.
  • Strainers may be required.
  • Vortex meters are affected by pulsating flow.

Installation

Vortex meters are installed directly in the process piping and are normally supported by the piping. They may be installed in any orientation. A vortex meter should be installed so that the meter body is not subjected to piping strain.

In liquid applications, the piping should be arranged so that the meter is kept full. Block and bypass valves should be provided when operating conditions do not permit shutdown.

Vortex meters are sometimes damaged during the start-up of new installations as a result of debris in the line. The line should be flushed and hydrostatically tested before the meter is installed.

Since the velocity profile is critical, it is imperative that gaskets not protrude into the flow stream when flanged meters are installed. Field calibration of vortex meters is limited to electrically spanning the converter or, on a pulse-output type, adjusting the scaling factor.

Vortex flow meters offer many advantages for flow measurement including easy installation without impulse lines, no moving parts to maintain or repair, less leak potential, and a wide flow turndown range. Vortex meters also offer very low power consumption, allowing for use in remote areas.

Additionally, Vortex meters are unique in that they can accommodate liquids, gasses, steam, and corrosive applications. Vortex flowmeters are also able to withstand high process pressures and temperatures.

Vortex Meters Operating Conditions

Here we shall see which type of vortex meter to use in different operating conditions and services.

Vortex Flow Meters Operating Conditions

Interest to add any further points? Share with us through below comments section below.

Author: Kalpit Patel

If you liked this article, then please subscribe to our YouTube Channel for Instrumentation, Electrical, PLC, and SCADA video tutorials.

You can also follow us on Facebook and Twitter to receive daily updates.

Read Next:

  • Wiring of Solenoid and PLC
  • Orifice Plate Design Rules
  • Level Instruments Specification
  • Variable Area Flow Meter
  • All About Turbine Meter
Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !

Continue Reading

Temperature Gauges and Elements : Detailed Specifications
Difference between DCS & PLC Systems
What is Marshalling Cabinet?
Floating Vs. Grounded Voltage
Testing of Pneumatic Systems
Field Instruments Selection Aid
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
Leave a Comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
210kSubscribersSubscribe
38kFollowersFollow

Categories

Explore More

Differential Pressure (DP) Flow Meters Range Calculation Methods
Interactions With Process Control Systems Philosophy
Instrumentation Books Download
Pneumatic Valves and Cylinders Sizing – Part 2
Flow Meter K-factor and Calculations
Flow Instruments – Selection, Principle & Application
What is a Segmental Wedge Flow Meter?
Pressure Temperature Compensation Flow Measurement

Keep Learning

Solenoid Valves Selection Guidelines

Solenoid Valves Selection Guidelines

Electrical and Instrument Engineers Job Profile

Instrumentation and Electrical Teams Interactions (Detail Design Engineering)

Relay Permissive and interlock circuits

Basics of Permissive and Interlock Circuits

Gas Detectors Location Installation

Gas Detectors Installation Techniques

sinking-and-sourcing-digital-output-modules

PLC Digital Signals Wiring Techniques

Instrument Air Compressor Control Philosophy

Instrument Air Compressor Control Philosophy

plc-analog-signals-wiring-techniques

PLC Analog Signals Wiring Techniques

Instrumentation Design Details

I&C Engineer Roles & Responsibilities – Instrumentation Design

Learn More

Temperature-gauge-calibration

Temperature Sensor calibration procedure

Three Phase AC Generators

Three Phase AC Generators

Metal Foil Strain Gauge Principle

Metal Foil Strain Gauge Principle

Foundation Fieldbus Interview Questions and Answers

Foundation Fieldbus Interview Questions and Answers

Instrumentation Standards

Electronic Equipment Purging Principles & Standards

Transformer Protection using fire water spray system

Fire Water Spray Systems Principle

Industrial IoT Job Roles and Responsibilities

IoT Engineer Job Roles and Responsibilities

PLC Examples for calling functions in SCL

How to Insert Block Calls in SCL Language?

Menu

  • About
  • Privacy Policy
  • Copyright

Quick Links

  • Learn PLC
  • Helping Hand
  • Part Time Job

YouTube Subscribe

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?