Inst ToolsInst ToolsInst Tools
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Search
  • Books
  • Software
  • Projects
  • Process
  • Tools
  • Basics
  • Formula
  • Power Plant
  • Root Cause Analysis
  • Electrical Basics
  • Animation
  • Standards
  • 4-20 mA Course
  • Siemens PLC Course
Reading: Pneumatic Valves and Cylinders Sizing – Part 1
Share
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Courses
  • Design
  • PLC
  • Interview
  • Control System
Search
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools > Blog > Instrumentation Design > Pneumatic Valves and Cylinders Sizing – Part 1

Pneumatic Valves and Cylinders Sizing – Part 1

Last updated: May 10, 2019 12:56 pm
Editorial Staff
Instrumentation Design
No Comments
Share
7 Min Read
SHARE

Valve and cylinder sizing represents possibly the most important element in the design and specification of any pneumatic system. Carried out correctly, it will ensure that capital and operating costs are minimised, while maximising system performance, reliability and efficiency.

Cylinder Sizing

Cylinder applications can be categorised as either:

  • STATIC, i.e. clamping, pressing, etc. or
  • DYNAMIC i.e. load moving.

In both cases the principle factors which must be considered when calculating the correct cylinder bore size are:

  • Amount of thrust required.
  • Available air pressure.
  • Efficiency of the cylinder

Cylinder Thrust

Cylinder thrust is a function of:

  • Piston diameter
  • Applied air pressure
  • Frictional resistance (efficiency

Required cylinder thrust is generally derived from a known clamping pressure (static) or the force required to move a particular load (dynamic) and is expressed in units of pounds force (lbf), kilogram force (kgf) or newtons (N).

In the case of dynamic applications, consideration must also be given to the decaying pressure on the side of the cylinder piston open to atmosphere.

Pneumatic Cylinder

In order to regulate cylinder speed, the decaying pressure on the side of the cylinder’s piston open to atmosphere, should be approximately 1.5 bar and can be considered to work against the cylinder.

To determine the correct size of cylinder, it is necessary to use the formula:

Thrust = Pressure x Area x Efficiency

Pressure in this instance being the available air pressure, expressed in units of bar, N/m2, lbf/in2 or kgf/cm2, and area being the piston area in units of m2, cm2 or in2. (One bar equals approximately 1 kgf/cm2).

Cylinder efficiency varies between manufacturers, being dependent upon both cylinder construction and the seal technology employed. The general efficiency of cylinders designed with lip seals is considered to be 80% whilst more sophisticated and technologically advanced designs can be as high as 97%.

Example 1:

Determine the size of cylinder (D) required to move a load of 150 kg, given an air pressure of 7.3 bar (7.3 kgf/cm2 ). Assume an efficiency of 90%.

Thrust = Pressure x Area x Efficiency (μ)

therefore, 150 = (7.3 – 1.5) x (Ï€ D2 / 4) x 0.9

Transposing this formula then gives:

D2 = (150 x 4) / [(7.3 – 1.5) x p x 0.9]  = 36.6  = 6.05 cm

Note : The available pressure of 7.3 bar was reduced by 1.5 bar to allow for decaying pressure on the side of the piston open to atmosphere. The example uses on efficiency of 90%

The result is directly equivalent to the diameter of the cylinder required, measured in centimetres. In practice, however, cylinders with the exact calculated bore size are not usually available. It is therefore necessary to specify a cylinder with the next standard bore size. In this case, a 63mm cylinder would be selected.

Clearly, with a larger bore cylinder, a decrease in working pressure can be tolerated; the difference between available air pressure and required system working pressure being the maximum permissible system pressure drop.

The basic formula used above can also be developed to encompass the extending stroke on a single acting cylinder and the retracting stroke on a double acting device.

For the extending stroke on a single acting cylinder:

FE = P x A x μ – FS

Where:

FE represents the extending cylinder thrust

P = available pressure

A = piston area

μ = efficiency

FS = the spring force at the end of stroke

For the retracting stroke on a double acting cylinder:

FR = Ï€(D2 – d2)/4 x P x μ

Where:

FR represents the cylinder thrust to retract

D = piston diameter

d = piston rod diameter

P = available pressure

μ = efficiency

Note : In this case, no allowance needs to be made for decaying pressure on the side of the piston open to atmosphere since when clamping, the piston will be static and this pressure will be zero.

Example 2:

Determine the size of a cylinder operating at a pressure of 6 bar (600000 N/m2), which would be capable of generating a clamping force of 1600N.

Based on the extending stroke formula:

Thrust = Pressure x Area x Efficiency (μ)

FE = P x πD2/4 x 0.9

therefore, 1600 = 600000 x πD2/4 x 0.9

Transposed to give:

D2 = (4 x 1600)/(600000 x π x 0.9)

D =  0.0614 m

D = 61.4 mm

Again, the next standard size of cylinder would be 63mm.

Once these formulae are understood, it is possible to produce a chart on which the theoretical thrust of any given cylinder bore can be shown against any given air pressure. See Figure below.

Cylinder Sizing

Note : If cylinder stroke is excessive and working pressure is near to maximum, final cylinder selection should be made in consultation with manufacturers representatives since rod buckling forces may need to be considered.

This chart does not take cylinder efficiency into consideration since this will vary between manufacturers. Values should, therefore, be multiplied by the efficiency factor to obtain usable thrust.

The graph below, Figure 2, allows an efficiency factor (m) to be obtained for various cylinder bore sizes where the supply pressure is known.

Pneumatic Cylinder Sizing

Note : The data shown on this graph applies to cylinders produced by SMC Pneumatics. Manufacturers of other cylinders should be consulted to obtain efficiencies for their designs.

Also Read : Pneumatic Valves and Cylinders Sizing – Part 2

Source : smc.eu

Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !

Continue Reading

As per Process Conditions, Find out the Circuit Components Status ?
Role of an Instrumentation Design Engineer for Beginners
What is a Control Loop ?
How to Select a Pressure Gauge
Solenoid Operated Valves and Latching Valves
What is SAMA Diagram?
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
Leave a Comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
210kSubscribersSubscribe
38kFollowersFollow

Categories

Explore More

List of Instrumentation Project Engineering Documents
Pressure Control Valves vs Pressure Regulators
What to Choose RTD or Thermocouple ?
Thermowell Insertion and Immersion Length
Remote Seal Transmitters Temperature Error
Immersion Heaters in Lube Oil Consoles
Competency Factors of Instrument & Control Engineer (Design Engineering)
What are Impulse Lines? – Impulse Line Problems & Solutions

Keep Learning

What's the problem with shock and vibration

What’s the problem with shock and vibration ?

Orifice Plate Sizing

Orifice Sizing Guidelines and Thumb Rules with Flowchart

Instrument Air Calculations

Basic Calculations of Instrument Air

Instrument Datasheet

What is Instrument DataSheet ?

Instrumentation Deliverables Generated from 3D Modeling

Instrumentation Deliverables Generated from 3D Modeling

control-valve-actuators

Control Valve Selection Tips

PLC TB Wiring

Electrical Signal and Control Wiring

Vortex Flow Meters

All About Vortex Flow Meters

Learn More

Sensors and Transducers Test

Sensors and Transducers Test

What is Transparent Solar Panel

What is Transparent Solar Panel? – Working Principle and Theory

Pros and Cons of Online Educational Services

Pros and Cons of Online Courses

PLC Star-Delta starter with interlock

Schneider PLC Example Program for Star-Delta System

Network topologies

Different Types of Network Topologies

Digital Electronics Multiple Choice Questions

Random Access Memory Objective Questions – Part 2

p-type-semiconductor

N Type and P Type Semiconductors

Galileo thermometer Principle

Galileo Thermometer

Menu

  • About
  • Privacy Policy
  • Copyright

Quick Links

  • Learn PLC
  • Helping Hand
  • Part Time Job

YouTube Subscribe

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?