Inst ToolsInst ToolsInst Tools
  • Courses
  • Videos
  • Q & A
    • Interview
      • Instrumentation
      • Electronics
      • Electrical
      • Practical Questions
    • MCQ
      • Instrumentation MCQ
      • Electrical MCQ
      • Electronics MCQ
      • Control Systems MCQ
      • Analog Electronics MCQ
      • Digital Electronics MCQ
      • Power Electronics MCQ
      • Microprocessor MCQ
      • Multiple Choice Questions
  • EE
    • Electronics
      • Electronics Q & A
      • Electronic Basics
      • Electronic Devices & Circuits
      • Electronics Animation
      • Digital Electronics
    • Electrical
      • Electrical Basics
      • Electrical Q & A
      • Power Electronics
      • Electrical Machines
      • Electrical Animation
      • Power Systems
      • Switchgear & Protection
      • Transmission & Distribution
  • Measure
    • Control Valves
    • Calibration
    • Temperature
    • Pressure
    • Flow
    • Level
    • Analyzers
    • Switches
    • Vibration
    • Solenoid Valve
  • Control
    • PLC Tutorials
    • Control Systems
    • Safety Instrumented System (SIS)
    • Communication
    • Fire & Gas System
  • More
    • Design
    • Tools
    • Animation
    • Basics
    • Formulas
    • Standards
    • TextBooks
    • Common
    • Software
    • Excel Tools
    • Erection & Commissioning
    • Process Fundamentals
    • Videos
    • Books
Search
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Reading: Overview of Industrial Control Systems
Share
Notification Show More
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Courses
  • PLC Tutorials
  • Control Systems
Search
  • Courses
  • Videos
  • Q & A
    • Interview
    • MCQ
  • EE
    • Electronics
    • Electrical
  • Measure
    • Control Valves
    • Calibration
    • Temperature
    • Pressure
    • Flow
    • Level
    • Analyzers
    • Switches
    • Vibration
    • Solenoid Valve
  • Control
    • PLC Tutorials
    • Control Systems
    • Safety Instrumented System (SIS)
    • Communication
    • Fire & Gas System
  • More
    • Design
    • Tools
    • Animation
    • Basics
    • Formulas
    • Standards
    • TextBooks
    • Common
    • Software
    • Excel Tools
    • Erection & Commissioning
    • Process Fundamentals
    • Videos
    • Books
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools > Blog > Control Systems > Overview of Industrial Control Systems

Overview of Industrial Control Systems

Industrial Control Systems are typically used in electrical, water and wastewater, oil and natural gas, chemical, transportation, pharmaceutical industries.

Last updated: March 4, 2021 11:08 am
Editorial Staff
Control Systems PLC Tutorials
No Comments
Share
11 Min Read
SHARE

Industrial control system (ICS) is a general term that encompasses several types of control systems, including supervisory control and data acquisition (SCADA) systems, distributed control systems (DCS), and other control system configurations such as Programmable Logic Controllers (PLC) often found in the industrial sectors and critical infrastructures.

Contents
Evolution of Industrial Control SystemsICS Industrial Sectors and Their InterdependenciesManufacturing IndustriesDistribution IndustriesDifferences between Manufacturing and Distribution ICSICS and Critical Infrastructure InterdependenciesICS Operation and Components

An ICS consists of combinations of control components (e.g., electrical, mechanical, hydraulic, pneumatic) that act together to achieve an industrial objective (e.g., manufacturing, transportation of matter or energy). The part of the system primarily concerned with producing the output is referred to as the process.

The control part of the system includes the specification of the desired output or performance. Control can be fully automated or may include a human in the loop. Systems can be configured to operate open-loop, closed-loop, and manual mode. In open-loop control systems, the output is controlled by established settings.

In closed-loop control systems, the output has an effect on the input in such a way as to maintain the desired objective. In manual mode, the system is controlled completely by humans. The part of the system primarily concerned with maintaining conformance with specifications is referred to as the controller (or control).

A typical ICS may contain numerous control loops, Human Machine Interfaces (HMI), and remote diagnostics and maintenance tools built using an array of network protocols.

ICS control industrial processes are typically used in electrical, water and wastewater, oil and natural gas, chemical, transportation, pharmaceutical, pulp and paper, food and beverage, and discrete manufacturing (e.g., automotive, aerospace, and durable goods) industries.

Evolution of Industrial Control Systems

Many of today’s ICS evolved from the insertion of IT capabilities into existing physical systems, often replacing or supplementing physical control mechanisms. For example, embedded digital controls replaced analog mechanical controls in rotating machines and engines.

Improvements in cost-and performance have encouraged this evolution, resulting in many of today’s “smart” technologies such as the smart electric grid, smart transportation, smart buildings, and smart manufacturing. While this increases the connectivity and criticality of these systems, it also creates a greater need for their adaptability, resilience, safety, and security.

The engineering of ICS continues to evolve to provide new capabilities while maintaining the typical long lifecycles of these systems. The introduction of IT capabilities into physical systems presents emergent behavior that has security implications. Engineering models and analysis are evolving to address these emergent properties including safety, security, privacy, and environmental impact interdependencies.

ICS Industrial Sectors and Their Interdependencies

Control systems are used in many different industrial sectors and critical infrastructures, including manufacturing, distribution, and transportation.

Manufacturing Industries

Manufacturing presents a large and diverse industrial sector with many different processes, which can be categorized into process-based and discrete-based manufacturing.

The process-based manufacturing industries typically utilize two main processes:

Continuous Manufacturing Processes

These processes run continuously, often with transitions to make different grades of a product.

Typical continuous manufacturing processes include fuel or steam flow in a power plant, petroleum in a refinery, and distillation in a chemical plant.

Batch Manufacturing Processes

These processes have distinct processing steps, conducted on a quantity of material. There are a distinct start and end step to a batch process with the possibility of brief steady-state operations during intermediate steps. Typical batch manufacturing processes include food manufacturing.

The discrete-based manufacturing industries typically conduct a series of steps on a single device to create the end product. Electronic and mechanical parts assembly and parts machining are typical examples of this type of industry.

Both process-based and discrete-based industries utilize the same types of control systems, sensors, and networks. Some facilities are a hybrid of discrete and process-based manufacturing.

Distribution Industries

ICS is used to control geographically dispersed assets, often scattered over thousands of square kilometers, including distribution systems such as water distribution and wastewater collection systems, agricultural irrigation systems, oil and natural gas pipelines, electrical power grids, and railway transportation systems.

Differences between Manufacturing and Distribution ICS

While control systems used in the manufacturing and distribution industries are very similar in operation, they are different in some aspects. Manufacturing industries are usually located within a confined factory or plant-centric area when compared to geographically dispersed distribution industries.

Communications in manufacturing industries are usually performed using local area network (LAN) technologies that are typically more reliable and high speed as compared to the long-distance communication wide-area networks (WAN) and wireless/RF (radio frequency) technologies used by distribution industries.

The ICS used in distribution industries is designed to handle long-distance communication challenges such as delays and data loss posed by the various communication media used. The security controls may differ among network types.

ICS and Critical Infrastructure Interdependencies

The critical infrastructure is often referred to as a “system of systems” because of the interdependencies that exist between its various industrial sectors as well as interconnections between business partners. Critical infrastructures are highly interconnected and mutually dependent in

complex ways, both physically and through a host of information and communications technologies. An incident in one infrastructure can, directly and indirectly, affect other infrastructures through cascading and escalating failures.

Both the electrical power transmission and distribution grid industries use geographically distributed SCADA control technology to operate highly interconnected and dynamic systems consisting of thousands of public and private utilities and rural cooperatives for supplying electricity to end-users.

Some SCADA systems monitor and control electricity distribution by collecting data from and issuing commands to geographically remote field control stations from a centralized location. SCADA systems are also used to monitor and control water, oil, and natural gas distribution, including pipelines, ships, trucks, and rail systems, as well as wastewater collection systems.

SCADA systems and DCS are often networked together. This is the case for electric power control centers and electric power generation facilities. Although the electric power generation facility operation is controlled by a DCS, the DCS must communicate with the SCADA system to coordinate production output with transmission and distribution demands.

Electric power is often thought to be one of the most prevalent sources of disruptions of interdependent critical infrastructures. As an example, a cascading failure can be initiated by a disruption of the microwave communications network used for an electric power transmission SCADA system.

The lack of monitoring and control capabilities could cause a large generating unit to be taken offline, an event that would lead to loss of power at a transmission substation. This loss could cause a major imbalance, triggering a cascading failure across the power grid.

This could result in large area blackouts that could potentially affect oil and natural gas production, refinery operations, water treatment systems, wastewater collection systems, and pipeline transport systems that rely on the grid for electric power.

ICS Operation and Components

The basic operation of an ICS is shown in the below Figure. Some critical processes may also include safety systems. Key components include the following:

Overview of Industrial Control Systems

A typical ICS contains numerous control loops, human interfaces, and remote diagnostics and maintenance tools built using an array of network protocols on layered network architectures.

A control loop utilizes sensors, actuators, and controllers (e.g., PLCs) to manipulate some controlled process. A sensor is a device that produces a measurement of some physical property and then sends this information as controlled variables to the controller.

The controller interprets the signals and generates corresponding manipulated variables, based on a control algorithm and target set points, which it transmits to the actuators. Actuators such as control valves, breakers, switches, and motors are used to directly manipulate the controlled process based on commands from the controller.

Operators and engineers use human interfaces to monitor and configure setpoints, control algorithms, and to adjust and establish parameters in the controller. The human interface also displays process status information and historical information. Diagnostics and maintenance utilities are used to prevent, identify, and recover from abnormal operation or failures.

Sometimes these control loops are nested and/or cascading –whereby the set point for one loop is based on the process variable determined by another loop. Supervisory-level loops and lower-level loops operate continuously over the duration of a process with cycle times ranging on the order of milliseconds to minutes.

Reference: National Institute of Standards and Technology Special Publication 800-82, Revision

If you liked this article, then please subscribe to our YouTube Channel for PLC and SCADA video tutorials.

You can also follow us on Facebook and Twitter to receive daily updates.

Read Next:

  • Instrumentation Design
  • Industrial Automation Quiz
  • Automation and Control System
  • Instrumentation Quiz
  • Automation System Security
Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !

Continue Reading

Alarm Simulator for Annunciator Logic
Limit, Selector, and Override controls
Free PID Controller Gains Tuning Tool
Learn PLC in Hindi
Configuration of Input and Output Tags in Siemens Scada and PLC
PLC Programming for Garden Sprinkler System
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
Leave a Comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
208kSubscribersSubscribe
38kFollowersFollow

Categories

Explore More

PID Controller Loop Tuning Questions and Answers – Part 1
What are High-Speed Counters and Fast Counters in PLC?
Steady-State Process Gain
Up Counter PLC Program
Commissioning Checklists for Industrial Automation Systems
How to Analyze PID Controller Actions
Configuration of InTouch Scada Trends
PID Simulator Download

Keep Learning

open vs closed loop

Open Loop and Closed Loop Animation

What is Ladder Diagram Programming ?

Simatic Hardware Configuration

Configuration of Profibus Network in Siemens PLC

Typical process control loop

How Process Control Loop Works

Sharing data between two PLC systems

Distributed IO Sharing Between PLC Systems – Technical Insights

VFD Braking

DC Injection Braking in VFD

Light Tower in Industrial Automation

What is a Tower Lamp? – Light Tower in Industrial Automation

compressor emergency shutdown system

Compressor Emergency Shutdown Root Cause Analysis

Learn More

Basics of Anti-Surge Control System

What is Anti Surge System?

ESP8266 WiFi Module Projects

ESP8266 WiFi Module Projects for Engineering Students

Filters in Compressors

Filters in Compressors

Industry 4.0

Industry 4.0

Differential Pressure Transmitter Zero Suppression

Basics of DP Transmitter Suppression and Elevation

IP transducer

Pilot Valves and Pneumatic Amplifying Relays

Core-Type Transformer

Transformer Theory of Operation

Electrical Machines Questions and Answers

Synchronous Machines Objective Questions

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?