Inst ToolsInst ToolsInst Tools
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Search
  • Books
  • Software
  • Projects
  • Process
  • Tools
  • Basics
  • Formula
  • Power Plant
  • Root Cause Analysis
  • Electrical Basics
  • Animation
  • Standards
  • 4-20 mA Course
  • Siemens PLC Course
Reading: DeadWeight Tester Questions
Share
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Courses
  • Design
  • PLC
  • Interview
  • Control System
Search
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools > Blog > Calibration > DeadWeight Tester Questions

DeadWeight Tester Questions

Last updated: November 13, 2020 12:51 pm
Editorial Staff
Calibration Pressure Measurement
No Comments
Share
5 Min Read
SHARE

A pressure calibration device called a deadweight tester generates very precise pressures by means of calibrated weights placed on top of a hydraulic piston.

The purpose of a deadweight tester is to serve as a guaranteed source of fluid pressure that may be trusted as a calibration standard, against which we may test the accuracy of a pressure-measuring instrument (e.g. a pressure gauge or pressure transmitter):

DeadWeight Tester

DeadWeight Tester

The secondary piston is moved in and out by turning a handle on a threaded rod. Its sole purpose is to displace enough oil to force the primary piston to rise from its resting position, so that it is entirely suspended by oil pressure. In that condition, the gauge will be subject to whatever pressure is proportional to the weights placed on top of the primary piston, and the area of the primary piston, according to the formula P = F/A .

What will happen to the gauge’s indication if the secondary piston is pushed in further? What will happen to the gauge’s indication if the secondary piston is pulled out, but not so far that the primary piston comes down to its resting position? In other words, what effect does the secondary piston position have on pressure applied to the gauge?

DeadWeight Tester Questions

Question 1:

In each condition, what happens to the gauge’s indication? (from above picture)

Answer:

Ideally, the secondary piston’s position will have no effect on the oil pressure sent to the gauge. Consequently, the gauge indication should not change.

Question 2:

Does the applied pressure increase, decrease, or stay the same? (from above picture)

Question 3:

Why are deadweight testers considered accurate standards for fluid pressure? What is it about their design and operation that makes them so accurate? Conversely, what aspects of their construction would have to change in order to corrupt their inherent accuracy?

Question 4:

If a technician changes the type of fluid used in a deadweight tester (for example, from one type of oil to another), will its accuracy change?

Question 5:

Identify some potential problems one might encounter when using a deadweight tester. What things, specifically, do you see that could go wrong with this device?

Question 6:

What is it about the nature of a deadweight tester that makes it so accurate and repeatable? To phrase this question in the negative, what would have to change in order to affect the accuracy of a deadweight tester’s output pressure?

Answer:

The accuracy of a deadweight tester is fixed by three fundamental variables, all of which are quite constant, two of which can be manufactured to highly accurate specifications, and the third being a constant of nature:

  • The mass of the calibration weights
  • The area of the primary piston
  • The gravity of the Earth

Question 7:

Why is it important for a deadweight tester to be level while it is being used to calibrate a pressure instrument?

Answer:

If a deadweight is not level, the force generated by the precision weights will not be parallel to the primary piston’s axis of travel, meaning that the piston will not support their full weight.

Question 8:

What effect will trapped air have inside a deadweight tester?

Answer:

Entrapped air will make the piston’s motion “springy” rather than solid and secure.

Question 9:

Why is it advisable to gently spin the primary piston and weights while the piston is suspended by oil pressure?

Answer:

Spinning the primary piston eliminates static friction, leaving only dynamic friction (which is much less) to interfere with gravity’s force on the primary piston.

Share your Answers with us through comments.

Read Next:

  • What is Dead Weight Tester?
  • Transmitter Calibration
  • Instrument Calibration MCQ
  • Pressure Standards
  • Pressure Gauge Testing

Credits: Tony R. Kuphaldt

Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !

Continue Reading

Practical Calibration Standards
Multiple Position Calibration of Temperature Chamber
Thermocouple Calibration
Remote Diaphragm Seal Transmitter for Vacuum Application
Electronic Pressure Sensors Principle
Different Types of Temperature Calibrators
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
Leave a Comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
210kSubscribersSubscribe
38kFollowersFollow

Categories

Explore More

Components of Bourdon Tube – Questions and Answers
Calibration Procedure of Weighing Balance and Common Mistakes
Calibration of Measuring Instruments – Significance, Costs & Risks
Temperature Compensation for Pressure Measurement
DP Transmitter Interface Level Measurement Principle, Limitations, Selection, Installation, Design & Calibration
What is a Barometer?
Pressure Gauge Installation at Pump Discharge
How to Prepare Pressure Gauge Datasheet ?

Keep Learning

Sealed Bellows Temperature Sensors

Bellows Pressure Sensors Working Principle Animation

Instrument Protection Methods: Seals

Why Calibration is Important

Why Calibration is Important?

Ammonia Gas Detector Calibration

Ammonia Gas Detector Working Principle and Calibration

Instrument Zero and Span Calibration

Instrument Zero and Span Calibration

Error sources creating Uncertainty in calibration

Error sources creating uncertainty in Calibration

Calibration of Weight

Calibration of Weight using the ABBA Method

Instrument Maintenance and Calibration System

Instrument Maintenance and Calibration System

Learn More

Timer-based vacuum cleaner in Schneider PLC

Schneider Electric PLC Timer Problem: Vacuum Cleaner

Transistor Biasing

Transistor Biasing

Thermowell Design Guidelines

Feedback Characteristics of Control Systems

Controller Components – Part 2 Objective Questions

PLC Totalizer

PLC Program for Flow Totalizer

Optical Modulation

What is Optical Modulation? – Methods of Optical Modulation

Timer STL Programming

Timers using Statement List (STL) PLC Programming

How Buoyant Force instruments Works

How Buoyant Force instruments Works ?

Menu

  • About
  • Privacy Policy
  • Copyright

Quick Links

  • Learn PLC
  • Helping Hand
  • Part Time Job

YouTube Subscribe

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?