Inst ToolsInst ToolsInst Tools
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Search
  • Books
  • Software
  • Projects
  • Process
  • Tools
  • Basics
  • Formula
  • Power Plant
  • Root Cause Analysis
  • Electrical Basics
  • Animation
  • Standards
  • 4-20 mA Course
  • Siemens PLC Course
Reading: Cascade Temperature Control System
Share
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Courses
  • Design
  • PLC
  • Interview
  • Control System
Search
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools > Blog > Control Systems > Cascade Temperature Control System

Cascade Temperature Control System

Last updated: March 28, 2020 11:54 am
Editorial Staff
Control Systems
No Comments
Share
4 Min Read
SHARE

Explain the operation of this cascade temperature control system:

Cascade Temperature Control System

Cascade Temperature Control System

Cascade control systems (also called two-element control systems) have two control “loops” functioning: a master and a slave (also known as primary and secondary, respectively). Identify the master (primary) and slave (secondary) loops in this temperature control system, and also determine which loop should be tuned first (and why!).

Also, identify the appropriate controller actions for each loop, assuming direct-acting transmitters and an air-to-open valve. Annotate this diagram with “+” and “−” symbols showing the influences PV and SP have on each controller, and explain how these symbols help your analysis of the controllers’ actions.

Answer:

The temperature controller (TC) provides a “remote” setpoint to the flow controller (FC), which throttles the flow control valve (FV) to achieve the desired rate of steam flow.

Master (primary) = Reactor temperature

Slave (secondary) = Steam flow

When tuning cascaded loops, you should always ensure the slave loop is well-tuned before attempting to tune the master loop. I’ll let you figure out why this is important!

Temperature Control Loop


A useful problem-solving strategy for determining necessary controller actions in a cascade control system is to replace the ISA-standard “bubble” symbols for controllers with triangular opamp symbols, complete with “+” and “−” symbols at the inputs.

One input of each “opamp” controller will be the PV, while the other input of each “opamp” controller will be the SP. The inverting and noninverting inputs standard to all operational amplifiers helps remind you that the PV and SP inputs of a loop controller always have opposite effects on the output signal.

So a helpful strategy for identifying necessary master and slave controller actions in a cascade control system is to re-draw the controller “bubbles” as opamp symbols instead, complete with “+” and “−” labels for noninverting and inverting inputs, respectively.

Since all PID controllers have PV and SP inputs, and these inputs always have opposite effects on the output signal, the opamp conventions of “+” and “−” work very well to describe the action of any PID controller. If the PV input on the opamp controller must be noninverting (“+”) in order to achieve loop stability, then that controller must be direct-acting.

If the PV input on the opamp controller must be inverting (“−”) in order to achieve loop stability, then that controller must be reverse-acting.

The following diagram shows how to use opamp symbols to represent controller actions in the same cascaded flow/temperature control system:

Reverse Acting Control Loop

Note that it is always the inputs of a controller we label with “+” or “−” symbols, never the output of a controller.

Questions for you:

When tuning each loop controller (TIC, FIC), what should be done with the other controller? Should the other controller be in automatic mode or manual mode, and why?

Suppose the control valve were switched from air-to-open to air-to-close. Would both master and slave controller actions need to be reversed, or just one of the controllers? If just one, which one?

Identify any load(s) on this process that are not being corrected or otherwise compensated for by cascade control.

Share Your Answers with us through comments.

Read Next:

  • Control Valve Split Range Loop
  • Industrial Automation and Control
  • PID Controllers Graphical Analysis
  • Security of Automation Systems
  • Pressure Control Problems

Credits: Tony R. Kuphaldt

Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !

Continue Reading

Control Loops Objective Questions and Answers
PID Controller Response with different Input Signals
List of 100 Distributed Control Systems Questions (DCS)
DCS Alarm Summary Dashboard using Microsoft Power BI
What is Ground, and importance of a Grounding System?
PID Controller Selection
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
Leave a Comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
210kSubscribersSubscribe
38kFollowersFollow

Categories

Explore More

Difference between Feedback, Feedforward, and Cascade Control?
Troubleshooting Current Loops with Voltage Measurement
Using of MCT instead of Cable Glands on the Cabinets
Why Baud Rate is Important in Modbus Network?
What is Maintenance Override Switch (MOS) ?
Recognizing a Porpoising PID Controller
Augmented Reality and Virtual Reality in Industrial Automation
Control System Architecture

Keep Learning

Annunciator Panel

What is a Annunciator Panel?

Control Valve in PlantPAx Project

Configuration of Control Valve in Studio 5000

Instrumentation Cyber Security Tips

How to Stop Cyber Attacks on PLC or DCS?

PID Controller Bumpless Transfer

What is PID Controller Bumpless Transfer ?

Distributed Control System & Motor Control Center Interface Philosophy

Distributed Control System & Motor Control Center Interface Philosophy

PID-Controller-Simulator-graph

PID Controller Tunning Parameters Simulator

Instrumentation Cyber Security

Instrumentation Cyber Security Glossary

Python in Industrial Automation

Python in Industrial Automation and Control Systems

Learn More

Instrumentation Standards Questions & Answers

Instrumentation Standards Questions and Answers

4-20mA Transmitter NAMUR Signal Levels

4-20mA Transmitter NAMUR Signal Levels

Electrical Wire Mesh

What is an Electrical Wire Mesh?

Control valve positioner calculation

Calculate Control Valve Stem Position

Protection Relays Interview Questions & Answers

Protection Relays Interview Questions & Answers

Pneumatic Piping Design and Specification

Pneumatic Piping Design and Specification

pressure transmitter calibration setup

Why Pressure Vessel Connected to Tubing System?

Alarm Chattering

Categorization of Alarms in a Process Plant

Menu

  • About
  • Privacy Policy
  • Copyright

Quick Links

  • Learn PLC
  • Helping Hand
  • Part Time Job

YouTube Subscribe

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?