Inst ToolsInst ToolsInst Tools
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Search
  • Books
  • Software
  • Projects
  • Process
  • Tools
  • Basics
  • Formula
  • Power Plant
  • Root Cause Analysis
  • Electrical Basics
  • Animation
  • Standards
  • 4-20 mA Course
  • Siemens PLC Course
Reading: Cascade Temperature Control System
Share
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Courses
  • Design
  • PLC
  • Interview
  • Control System
Search
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools > Blog > Control Systems > Cascade Temperature Control System

Cascade Temperature Control System

Last updated: March 28, 2020 11:54 am
Editorial Staff
Control Systems
No Comments
Share
4 Min Read
SHARE

Explain the operation of this cascade temperature control system:

Cascade Temperature Control System

Cascade Temperature Control System

Cascade control systems (also called two-element control systems) have two control “loops” functioning: a master and a slave (also known as primary and secondary, respectively). Identify the master (primary) and slave (secondary) loops in this temperature control system, and also determine which loop should be tuned first (and why!).

Also, identify the appropriate controller actions for each loop, assuming direct-acting transmitters and an air-to-open valve. Annotate this diagram with “+” and “−” symbols showing the influences PV and SP have on each controller, and explain how these symbols help your analysis of the controllers’ actions.

Answer:

The temperature controller (TC) provides a “remote” setpoint to the flow controller (FC), which throttles the flow control valve (FV) to achieve the desired rate of steam flow.

Master (primary) = Reactor temperature

Slave (secondary) = Steam flow

When tuning cascaded loops, you should always ensure the slave loop is well-tuned before attempting to tune the master loop. I’ll let you figure out why this is important!

Temperature Control Loop


A useful problem-solving strategy for determining necessary controller actions in a cascade control system is to replace the ISA-standard “bubble” symbols for controllers with triangular opamp symbols, complete with “+” and “−” symbols at the inputs.

One input of each “opamp” controller will be the PV, while the other input of each “opamp” controller will be the SP. The inverting and noninverting inputs standard to all operational amplifiers helps remind you that the PV and SP inputs of a loop controller always have opposite effects on the output signal.

So a helpful strategy for identifying necessary master and slave controller actions in a cascade control system is to re-draw the controller “bubbles” as opamp symbols instead, complete with “+” and “−” labels for noninverting and inverting inputs, respectively.

Since all PID controllers have PV and SP inputs, and these inputs always have opposite effects on the output signal, the opamp conventions of “+” and “−” work very well to describe the action of any PID controller. If the PV input on the opamp controller must be noninverting (“+”) in order to achieve loop stability, then that controller must be direct-acting.

If the PV input on the opamp controller must be inverting (“−”) in order to achieve loop stability, then that controller must be reverse-acting.

The following diagram shows how to use opamp symbols to represent controller actions in the same cascaded flow/temperature control system:

Reverse Acting Control Loop

Note that it is always the inputs of a controller we label with “+” or “−” symbols, never the output of a controller.

Questions for you:

When tuning each loop controller (TIC, FIC), what should be done with the other controller? Should the other controller be in automatic mode or manual mode, and why?

Suppose the control valve were switched from air-to-open to air-to-close. Would both master and slave controller actions need to be reversed, or just one of the controllers? If just one, which one?

Identify any load(s) on this process that are not being corrected or otherwise compensated for by cascade control.

Share Your Answers with us through comments.

Read Next:

  • Control Valve Split Range Loop
  • Industrial Automation and Control
  • PID Controllers Graphical Analysis
  • Security of Automation Systems
  • Pressure Control Problems

Credits: Tony R. Kuphaldt

Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !

Continue Reading

Categorization of Alarms in a Process Plant
4–20 mA Process Control Loops
Features of PID Controller actions
Add On Instructions Programming – Analog Input Devices in Studio 5000
Process Dynamics and PID Controller Tuning
PLC or DCS Control System Spares
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
Leave a Comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
210kSubscribersSubscribe
38kFollowersFollow

Categories

Explore More

Supervisory Control
How to Import PlantPAx Library?
Commissioning Documents for Instrumentation Engineers
Speed Control of Ship Electrical Motor Propulsion
How to Export Data from DeltaV System to Excel
VFD Commissioning and Testing Procedure (Variable Frequency Drive)
Recognizing a Porpoising PID Controller
Loop Controller HART Signal Noise

Keep Learning

Process Control System

Basics of Process Control Systems

21 CFR in SCADA and HMI Systems

What is 21 CFR in SCADA and HMI Systems?

Layer-2 and Layer-3 Network Switches

Layer-2 and Layer-3 Network Switches

ESD System Insights

ESD System Insights: Signals for Emergency Valve Shutdown Explained

Control Loops

Control Loops Objective Questions and Answers

What is Open Telemetry?

What is Open Telemetry? – Principles and Benefits

Python in Industrial Automation

Python in Industrial Automation and Control Systems

PID Tuner

Free PID Controller Gains Tuning Tool

Learn More

Instrumentation Cyber Security Tips

How to Stop Cyber Attacks on PLC or DCS?

Jog button in Motor Start Stop Logic using PLC

What is Motor Jogging ?

How to Test Diodes Using Multimeter

How to Test Diodes Using Multimeter

Transformer Open and Short Circuit Tests

Feedforward Control Questions & Answers

Feedforward Control Questions and Answers

P&ID Guidelines for Pumps Heat Exchangers

P&ID Guidelines for Pumps Heat Exchangers

Instrument Technician Interview Questions

Instrument Technician Interview Questions and Answers

Air Filter Regulator Working Principle Animation

Menu

  • About
  • Privacy Policy
  • Copyright

Quick Links

  • Learn PLC
  • Helping Hand
  • Part Time Job

YouTube Subscribe

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?