Inst ToolsInst ToolsInst Tools
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Search
  • Books
  • Software
  • Projects
  • Process
  • Tools
  • Basics
  • Formula
  • Power Plant
  • Root Cause Analysis
  • Electrical Basics
  • Animation
  • Standards
  • 4-20 mA Course
  • Siemens PLC Course
Reading: Starting a Synchronous Motor
Share
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Courses
  • Design
  • PLC
  • Interview
  • Control System
Search
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools > Blog > Electrical Theory > Starting a Synchronous Motor

Starting a Synchronous Motor

Last updated: August 6, 2018 9:42 pm
Editorial Staff
Electrical Theory
No Comments
Share
3 Min Read
SHARE

A synchronous motor may be started by a DC motor on a common shaft. When the motor is brought to synchronous speed, AC current is applied to the stator windings. The DC motor now acts as a DC generator and supplies DC field excitation to the rotor of the synchronous motor. The load may now be placed on the synchronous motor.

Synchronous motors are more often started by means of a squirrel-cage winding embedded in the face of the rotor poles. The motor is then started as an induction motor and brought to ~95% of synchronous speed, at which time direct current is applied, and the motor begins to pull into synchronism. The torque required to pull the motor into synchronism is called the pull-in torque.

As we already know, the synchronous motor rotor is locked into step with the rotating magnetic field and must continue to operate at synchronous speed for all loads. During no-load conditions, the center lines of a pole of the rotating magnetic field and the DC field pole coincide (Figure 1a). As load is applied to the motor, there is a backward shift of the rotor pole, relative to the stator pole (Figure 1b). There is no change in speed. The angle between the rotor and stator poles is called the torque angle (α).

Starting a Synchronous Motor

Figure 1 : Torque Angle

If the mechanical load on the motor is increased to the point where the rotor is pulled out of synchronism (α≅90°), the motor will stop. The maximum value of torque that a motor can develop without losing synchronism is called its pull-out torque.

Field Excitation

For a constant load, the power factor of a synchronous motor can be varied from a leading value to a lagging value by adjusting the DC field excitation (Figure 2). Field excitation can be adjusted so that PF = 1 (Figure 2a). With a constant load on the motor, when the field excitation is increased, the counter EMF (VG) increases. The result is a change in phase between stator current (I) and terminal voltage (VG), so that the motor operates at a leading power factor (Figure 2b).

Synchronous Motor Field Excitation

Figure 2 : Synchronous Motor Field Excitation

VP in Figure 2 is the voltage drop in the stator winding’s due to the impedance of the windings and is 90° out of phase with the stator current. If we reduce field excitation, the motor will operate at a lagging power factor (Figure 2c). Note that torque angle, α, also varies as field excitation is adjusted to change power factor.

Synchronous motors are used to accommodate large loads and to improve the power factor of transformers in large industrial complexes.

Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !

Continue Reading

Voltage Divider
Applying Kirchhoff’s Current Law
Conductor, Insulator, Resistor and Current Flow
Current Division
Ground Detector Principle
Battery Terminology
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
Leave a Comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
210kSubscribersSubscribe
38kFollowersFollow

Categories

Explore More

Types of AC Generators
Reading Electrical Schematics
Resistivity
Parallel AC Generators
Electrical Diagrams and Schematics
Electrical Wiring Terminology
AC Generator Theory
Discharge and Charging of Lead-Acid Battery

Keep Learning

Calculate Power in Parallel RCL Circuit

Calculate Power in Parallel RCL Circuit

Electron Flow Through Battery

Batteries Theory

Two Wattmeters to Measure 3 Phase Power

Three Phase Wattmeter

DC Machine

DC Generator Internal Losses

Using Kirchhoff’s Voltage Law to find Current with one Source

Applying Kirchhoff’s Voltage Law

Forward Bias

Rectifiers, Forward Bias and Reverse Bias

LVR Motor Controller Operation

Low Voltage Protection (LVP) and Low Voltage Release (LVR)

Electrical Symbols

Electrical Symbols

Learn More

Quiz Program Logic Using PLC Programming

Quiz Program Logic Using PLC Programming

DHCP

Difference Between BOOTP and DHCP

Lube Oil Console

Immersion Heaters in Lube Oil Consoles

hall-effect-sensor

Hall Effect Sensor Working Principle Animation

OPC Communication

OPC Solves Automation’s Data Connectivity

Rupture Disc

Working of Rupture Disk

Why rating of Synchronous Generators and Alternators in MVA or KVA

Power Electronics Objective Questions

Cycloconverters Objective Questions

Menu

  • About
  • Privacy Policy
  • Copyright

Quick Links

  • Learn PLC
  • Helping Hand
  • Part Time Job

YouTube Subscribe

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?