Inst ToolsInst ToolsInst Tools
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Search
  • Books
  • Software
  • Projects
  • Process
  • Tools
  • Basics
  • Formula
  • Power Plant
  • Root Cause Analysis
  • Electrical Basics
  • Animation
  • Standards
  • 4-20 mA Course
  • Siemens PLC Course
Reading: SIS Hardware Fault Tolerance – Methods to Overcome HFT issues
Share
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Courses
  • Design
  • PLC
  • Interview
  • Control System
Search
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools > Blog > Safety Instrumented System (SIS) > SIS Hardware Fault Tolerance – Methods to Overcome HFT issues

SIS Hardware Fault Tolerance – Methods to Overcome HFT issues

In Safety Instrumented System, Hardware fault tolerance (HFT) is vital to ascertain how long SIS can perform with designed integrity.

Last updated: November 17, 2022 3:02 pm
Editorial Staff
Safety Instrumented System (SIS)
No Comments
Share
5 Min Read
SHARE

In Safety Instrumented System (SIS), Hardware fault tolerance is very vital to ascertain how long SIS can perform with the designed integrity.

Contents
SIS Fault ToleranceHardware Fault Tolerance (HFT)The Generic Rule for Fault ToleranceMethods to Overcome HFT issues

Fault Tolerance is the ability of a functional unit to continue to perform a required function in the presence of faults or errors.

SIS Fault Tolerance

Fault Tolerance is one of the requirements that the Automation/Safety Design must meet to achieve the required safety.

In general, three forms of proof are required to claim that an SIS reaches a particular safety integrity level.

  • The devices should be user-approved for the operating environment, application, and integrity level.
    • Components of new Safety Instrumented Systems should be selected to meet SIL requirements and meets the criteria for proven-in-use.
  • The device subsystems should meet the fault tolerance requirements.
  • The overall SIS should achieve the target probability of failure on demand (PFD) when the SIS is operating in the continuous mode.
SIS Fault Tolerance
Image Courtesy: Auma

Hardware Fault Tolerance (HFT)

Hardware fault tolerance provides protection against Random failures. If it would result in additional failures and lead to decreased overall process safety, then the HFT may be reduced. This shall be justified and documented.

The justification shall provide evidence that the proposed architecture is suitable for its intended purpose and meets the safety integrity requirements.

The HFT requirements in below table represent the minimum system or, where relevant, the SIS subsystem redundancy.

Depending on the application, device failure rate, and proof-testing interval, additional redundancy can be required to satisfy the failure measure for the SIL of the SIF.

SIL LevelMinimum required HFT
SIL 1 (Low/High/Continuous demand mode)0
SIL 2 (Low demand mode)0
SIL 2 (High/Continuous demand mode)1
SIL 3 (Low/High/Continuous demand mode)1
SIL 4 (Low/High/Continuous demand mode)2

As per IEC: 61511 “For all subsystems (for example, sensor, final elements, and non-PE logic solvers) excluding PE logic solvers the minimum fault tolerance specified in the above table may be reduced by one”.

In other words, SIL-2 SIS’s (Low demand) do not need any fault tolerance if:

  1. The sensors or final elements are selected on the basis of “prior use”
  2. The sensor or final element does not have a sophisticated computer with downloadable software, such as with analyzers; the device allows adjustment of process-related parameters only, for example, measuring range, upscale or downscale failure direction;
  3. The sensor or final element’s process-related parameters are access restricted (for example, jumper, password protected) to enable only qualified individuals can make the changes.
  4. The sensor or final element is not involved in a SIS requiring a risk reduction equal to or greater than 10,000 times.

The Generic Rule for Fault Tolerance

One may decrease the minimum fault tolerance requirement by 1 if ALL the following apply:

  1. Prior use
  2. Simple electronics based sensors, Final elements – only process-related parameter changes allowed
  3. Protection for changing the process-related parameters
  4. SIL-3 or less.

Alternately one must Increase the minimum hardware fault tolerance by 1 if:

The dominant failure mode is in the dangerous state & At least 60% of dangerous failures are not detected.

Methods to Overcome HFT issues

Fault tolerance is the preferred solution to achieve the required confidence that a robust architecture has been achieved.

When these conditions are satisfied, the purpose of the conclusion is to demonstrate that the proposed alternative architecture provides an equivalent or better solution.

This may vary depending on the application and/or the technology in use

A few examples are Backup arrangements (e.g., Analytical redundancy, replacing a failed sensor output with physical calculation results from other sensors outputs)

Using more reliable items of the same technology (as applicable)

Changing for a more reliable technology

Decreasing common cause failure impact by using diversified technology

Increasing the design margins (where it’s allowed)

Constraining the environmental conditions (e.g. for electronic components)

Decreasing the reliability uncertainty by gathering more field feedback or specialist opinion.

If you liked this article, then please subscribe to our YouTube Channel for Electrical, Electronics, Instrumentation, PLC, and SCADA video tutorials.

You can also follow us on Facebook and Twitter to receive daily updates.

Read Next:

  • SIS Design
  • SIL Verification
  • SIS Proof Testing
  • Common Cause Failure
  • Intrinsic Safe Calculation
Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !

Continue Reading

Safety Requirement Specifications (SRS) – Safety Instrumented System
SIS Final Control Elements
SIS Solenoid Valves – Safety PLC
Why choose Intrinsic Safety ?
SIS Example : Nuclear Reactor Controls
SIS Application Program – Safety Instrumented System
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
Leave a Comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
210kSubscribersSubscribe
38kFollowersFollow

Categories

Explore More

Energize to Safe Loop philosophy
SIS Bypass and Impairment – Safety Instrumented System
Importance of Safety Integrity Level
SIS Maintenance – Safety Instrumented System
Difference between SIS, PLC and BPCS Systems
Purpose of Emergency Shutdown (ESD) System
Understanding Emergency Shutdown Button Installation (ESD)
S84 / IEC 61511 Standard for Safety Instrumented Systems

Keep Learning

BPCS Control System and ESD Safety System of Delta-V DCS

BPCS Control System and ESD Safety System of Delta-V DCS

Safety Instrumented System Interview Questions Answers

Safety Instrumented System Interview Questions and Answers

failure rate of a component - 1

Failure rate and MTBF of Safety Instrumented Systems

Proof Testing of Safety Instrumented Systems

Proof Testing of Safety Instrumented Systems

Safety Instrumented Systems Tutorials

High Reliability of Safety Instrumented Systems

Smart Valve Monitoring

SIS Instruments and Valves Inline Testing – Safety Instrumented System

Safety Integrity Level (SIL)

Logic Solver in Safety PLC

What is a Logic Solver? – Safety PLC

Learn More

Dip Tube Type Level System

Questions on Dip Tube Type Level System

L2F insertion-style flowmeter

Optical Flow Meter Principle

Electrical Machines Questions and Answers

Parallel Operation of Single Phase Transformers

Hazardous Area Terminology

Hazardous Area Terminology

How to Locate Faults in Cables? - Fault Analysis and Location

How to Locate Faults in Cables? – Fault Analysis & Location

Humming Sound in Transformer

Why is the Humming Sound Produced in Transformer?

Analyzer Sample Conditioning

Sodium Analyzer Problems and Troubleshooting Steps

Pilot Operated Back Pressure Regulator Valve

Pilot Operated Back Pressure Regulator Valve Test

Menu

  • About
  • Privacy Policy
  • Copyright

Quick Links

  • Learn PLC
  • Helping Hand
  • Part Time Job

YouTube Subscribe

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?