Inst ToolsInst ToolsInst Tools
  • Ask
  • Courses
  • Videos
  • Q & A
    • Interview
      • Instrumentation
      • Electronics
      • Electrical
      • Practical Questions
    • MCQ
      • Instrumentation MCQ
      • Electrical MCQ
      • Electronics MCQ
      • Control Systems MCQ
      • Analog Electronics MCQ
      • Digital Electronics MCQ
      • Power Electronics MCQ
      • Microprocessor MCQ
      • Multiple Choice Questions
  • EE
    • Electronics
      • Electronics Q & A
      • Electronic Basics
      • Electronic Devices & Circuits
      • Electronics Animation
      • Digital Electronics
    • Electrical
      • Electrical Basics
      • Electrical Q & A
      • Power Electronics
      • Electrical Machines
      • Electrical Animation
      • Power Systems
      • Switchgear & Protection
      • Transmission & Distribution
  • Measure
    • Control Valves
    • Calibration
    • Temperature
    • Pressure
    • Flow
    • Level
    • Analyzers
    • Switches
    • Vibration
    • Solenoid Valve
  • Control
    • PLC Tutorials
    • Control Systems
    • Safety Instrumented System (SIS)
    • Communication
    • Fire & Gas System
  • More
    • Design
    • Tools
    • Animation
    • Basics
    • Formulas
    • Standards
    • TextBooks
    • Common
    • Software
    • Excel Tools
    • Erection & Commissioning
    • Process Fundamentals
    • Videos
    • Books
Search
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Reading: Scintillation Counter Principle
Share
Notification Show More
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Courses
  • PLC Tutorials
  • Control Systems
Search
  • Ask
  • Courses
  • Videos
  • Q & A
    • Interview
    • MCQ
  • EE
    • Electronics
    • Electrical
  • Measure
    • Control Valves
    • Calibration
    • Temperature
    • Pressure
    • Flow
    • Level
    • Analyzers
    • Switches
    • Vibration
    • Solenoid Valve
  • Control
    • PLC Tutorials
    • Control Systems
    • Safety Instrumented System (SIS)
    • Communication
    • Fire & Gas System
  • More
    • Design
    • Tools
    • Animation
    • Basics
    • Formulas
    • Standards
    • TextBooks
    • Common
    • Software
    • Excel Tools
    • Erection & Commissioning
    • Process Fundamentals
    • Videos
    • Books
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools > Blog > Analyzers > Scintillation Counter Principle

Scintillation Counter Principle

Last updated: September 20, 2019 11:44 am
Editorial Staff
Analyzers Animation
1 Comment
Share
4 Min Read
SHARE

A scintillation counter is an instrument for detecting and measuring ionizing radiation by using the excitation effect of incident radiation on a scintillator material and detecting the resultant light pulses.

Contents
Scintillation CounterOperationScintillation Counter AnimationDetection materialsApplications

It consists of a scintillator that generates photons in response to incident radiation, a sensitive photomultiplier tube (PMT) which converts the light to an electrical signal and electronics to process this signal.

Scintillation Counter

Scintillation Counter Theory

Scintillation counters are widely used in radiation protection, an assay of radioactive materials and physics research because they can be made inexpensively yet with good quantum efficiency, and can measure both the intensity and the energy of incident radiation.

Operation

When an ionizing particle passes into the scintillator material, atoms are ionized along a track. For charged particles the track is the path of the particle itself. For gamma rays (uncharged), their energy is converted to an energetic electron via either the photoelectric effect, Compton scattering or pair production.

The chemistry of atomic de-excitation in the scintillator produces a multitude of low-energy photons, typically near the blue end of the visible spectrum. The number of such photons is in proportion to the amount of energy deposited by the ionizing particle.

Some portion of these low-energy photons arrive at the photocathode of an attached photo multiplier tube. The photocathode emits at most one electron for each arriving photon by the photoelectric effect.

This group of primary electrons is electrostatically accelerated and focused by an electrical potential so that they strike the first dynode of the tube. The impact of a single electron on the dynode releases a number of secondary electrons which are in turn accelerated to strike the second dynode.

Scintillation Counter Principle

Each subsequent dynode impact releases further electrons, and so there is a current amplifying effect at each dynode stage. Each stage is at a higher potential than the previous to provide the accelerating field.

The resultant output signal at the anode is in the form of a measurable pulse for each group of photons that arrived at the photocathode and is passed to the processing electronics. The pulse carries information about the energy of the original incident radiation on the scintillator.

The number of such pulses per unit time gives information about the intensity of the radiation. In some applications individual pulses are not counted, but rather only the average current at the anode is used as a measure of radiation intensity.

Scintillation Counter Animation

Scintillation Detector Animation

The scintillator must be shielded from all ambient light so that external photons do not swamp the ionization events caused by incident radiation. To achieve this a thin opaque foil, such as aluminized mylar, is often used, though it must have a low enough mass to minimize undue attenuation of the incident radiation being measured.

Detection materials

 The scintillator consists of a transparent crystal, usually a phosphor, plastic (usually containing anthracene) or organic liquid (see liquid scintillation counting) that fluoresces when struck by ionizing radiation.

Cesium iodide (CsI) in crystalline form is used as the scintillator for the detection of protons and alpha particles. Sodium iodide (NaI) containing a small amount of thallium is used as a scintillator for the detection of gamma waves and zinc sulfide (ZnS) is widely used as a detector of alpha particles. Zinc sulfide is the material Rutherford used to perform his scattering experiment. Lithium iodide (LiI) is used in neutron detectors.

Applications

cintillation counters are used to measure radiation in a variety of applications including hand held radiation survey meters, personnel and environmental monitoring for radioactive contamination, medical imaging, radiometric assay, nuclear security and nuclear plant safety.

Reference : Wikipedia

Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !
Relay Working Animation
Ultrasonic Flow Meters Working Principle
Logic Gates Animation
Moisture and Dew Point Analyzer Problems and Troubleshooting Tips
Probe Type GWR Level Transmitter Working Animation
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
1 Comment
  • Sonal Parmar says:
    February 24, 2021 at 12:53 pm

    please provide me animation of scintillation counter

    Reply

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
208kSubscribersSubscribe
38kFollowersFollow

Categories

Recent Comments

  • Guifty Shimica on Top Non-PLC Certification Courses for Automation Professionals
  • Guifty Shimica on Top Non-PLC Certification Courses for Automation Professionals
  • MIHARITSOA Aina Sitraka on Top Non-PLC Certification Courses for Automation Professionals
  • Vaishnavi on Free Instrumentation Course for Trainee Engineers

Related Articles

toroidal conductivity probe principle

Electrodeless Conductivity Probes Principle

Dew Point Method Humidity Measurement

Humidity Measurement Principle

Solenoid Valve Terminology

How a Solenoid valve works

Network Switch

Network Switch Port Allocation Details

On-OFF Valve Animation

What is ON/OFF Valve ?

Open Channel Flow Measurement Animation

Open Channel Flow Measurement Principle

Ultrasonic Sludge Blanket Level Meter Animation

Float level gauge Principle

Float Type Level Indicator Principle

More Articles

Optimal Control Systems

The Infinite Time Regulator Problem

Optimal Control Systems

Parameter Optimization

Control Systems Questions & Answers

Control Systems Objective Questions & Answers – Set 3

Steam Eductor Question

Steam Eductor Question

PLC Programming Example on Bottle Line Control

PLC Programming Example on Bottle Line Control

Intelligent Motor Control Center

What is an Intelligent Motor Control Center? – IMCC

DCS Alarm and Setpoint

Setpoints and Alarms in Control System

ATEX Standards

ATEX Standards

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?