Inst ToolsInst ToolsInst Tools
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Search
  • Books
  • Software
  • Projects
  • Process
  • Tools
  • Basics
  • Formula
  • Power Plant
  • Root Cause Analysis
  • Electrical Basics
  • Animation
  • Standards
  • 4-20 mA Course
  • Siemens PLC Course
Reading: Electrodeless Conductivity Probes Principle
Share
Notification Show More
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Courses
  • Design
  • PLC
  • Interview
  • Control System
Search
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools > Blog > Analyzers > Electrodeless Conductivity Probes Principle

Electrodeless Conductivity Probes Principle

Last updated: April 10, 2019 3:16 pm
Editorial Staff
Analyzers
No Comments
Share
4 Min Read
SHARE

An entirely different design of conductivity cell called electrodeless uses electromagnetic induction rather than direct electrical contact to detect the conductivity of the liquid solution. This cell design enjoys the distinct advantage of virtual immunity to fouling (Note 1), since there is no direct electrical contact between the measurement circuit and the liquid solution.

Note 1 : Toroidal conductivity sensors may suffer calibration errors if the fouling is so bad that the hole becomes choked off with sludge, but this is an extreme condition. These sensors are far more tolerant to fouling than any form of contact-type (electrode) conductivity cell.

Instead of using two or four electrodes inserted into the solution for conductivity measurement, this cell uses two toroidal inductors (one to induce an AC voltage in the liquid solution, and the other to measure the strength of the resulting current through the solution):

Electrodeless Conductivity Probes Principle

The basic idea of this instrument is that a primary coil energized by AC power induces an electric current that passes through the sample liquid. This current, in turn, induces a measurable voltage in a secondary coil.

Since ferromagnetic toroids do an excellent job of containing their own magnetic fields, there will be negligible mutual inductance between the two wire coils.

The only way a voltage will be induced in the secondary coil is if there is an AC current passing through the center of that coil, through the liquid itself. If the liquid is non-conductive, the secondary coil will see no induced voltage at all despite being situated near the energized primary coil.

The more conductive the liquid solution, the more current will pass through the center of both coils (through the liquid), thus producing a greater induced voltage at the secondary coil. Secondary coil voltage therefore is directly proportional to liquid conductivity (Note 2 ).

Note 2 : Note that this is opposite the behavior of a direct-contact conductivity cell, which produces less voltage as the liquid becomes more conductive.

The equivalent electrical circuit for a toroidal conductivity probe looks like a pair of transformers, with the liquid acting as a resistive path for current to connect the two transformers together:

toroidal conductivity probe

Toroidal conductivity cells are preferred over direct-contact conductivity cells whenever possible, due to their ruggedness and virtual immunity to fouling.

However, toroidal cells are not sensitive enough for conductivity measurement in high-purity applications such as boiler feedwater treatment and ultra-pure water treatment necessary for pharmaceutical and semiconductor manufacturing.

As always, the manufacturer’s specifications are the best source of information for conductivity cell applicability in any particular process.

The following photograph shows a toroidal conductivity probe mounted on a display board at a trade-show, along with a conductivity transmitter (to both display the conductivity measurement in millisiemens per centimeter and also transmit the measurement as a 4-20 mA analog signal):

toroidal conductivity probe principle

Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !

Continue Reading

CEMS Principle, Types, Advantages, and Disadvantages
Conductivity Analyzers Interview Questions & Answers
Moisture Calculator
Fluorescence
Dew Point Meter Principle
Absorption Type Optical Analyzer
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
Leave a Comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
210kSubscribersSubscribe
38kFollowersFollow

Categories

Explore More

Dissolved Oxygen Analyzer Interview Questions & Answers
Industrial Applications of Chromatographs
Infrared Non Dispersive CO2 Analyzer Working Principle
Total Organic Carbon Analyzers Questions and Answers
How to Calibrate Oxygen Analyzer? – O2 Sensor Testing Procedure
Is it Easy to Measure Natural Gas Flow and Volume?
Ambient Air Quality Monitoring System Principle
Basics of Chromatograph Operation

Keep Learning

Falling Ball Viscometer Principle

Falling Ball Viscometer Principle

Analyzer Sampling System

Gas Analyzer Sampling System

Analytical Standards

Analyzer chopper wheel

NDIR Analyzer Filter Cells

Hair Hydrometer Principle

Hair Hydrometer Principle

pH Analyzer Calibration and Troubleshooting

pH Analyzer Calibration and Troubleshooting

Conductivity measurement

Conductivity Measurement

H & B Gas Analyzer Principle and Calibration Procedure

Learn More

Configuration of Siemens Scada and PLC

Configuration of Input and Output Tags in Siemens Scada and PLC

PRV

Direct-actuated Safety and Relief Valves

PLC Program for Temperature Control using Thermostat

PLC Program for Temperature Control using Thermostat

Automotive Rail Rapid Transit

Automotive Rail Rapid Transit

Industry 4.0

Industry 4.0

Pressure Sensor Temperature Effects

Temperature Compensation for Pressure Measurement

Allen Bradley PLC communication is established

Procedure for Connecting Allen Bradley PLC and PC – RS Logix 500

Equal Flow Balance Operation of Parallel Compressors

Types of Surge Control for Parallel Gas Compressors

Menu

  • About
  • Privacy Policy
  • Copyright

Quick Links

  • Learn PLC
  • Helping Hand
  • Part Time Job

YouTube Subscribe

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?