Inst ToolsInst ToolsInst Tools
  • Courses
  • Videos
  • Q & A
    • Interview
      • Instrumentation
      • Electronics
      • Electrical
      • Practical Questions
    • MCQ
      • Instrumentation MCQ
      • Electrical MCQ
      • Electronics MCQ
      • Control Systems MCQ
      • Analog Electronics MCQ
      • Digital Electronics MCQ
      • Power Electronics MCQ
      • Microprocessor MCQ
      • Multiple Choice Questions
  • EE
    • Electronics
      • Electronics Q & A
      • Electronic Basics
      • Electronic Devices & Circuits
      • Electronics Animation
      • Digital Electronics
    • Electrical
      • Electrical Basics
      • Electrical Q & A
      • Power Electronics
      • Electrical Machines
      • Electrical Animation
      • Power Systems
      • Switchgear & Protection
      • Transmission & Distribution
  • Measure
    • Control Valves
    • Calibration
    • Temperature
    • Pressure
    • Flow
    • Level
    • Analyzers
    • Switches
    • Vibration
    • Solenoid Valve
  • Control
    • PLC Tutorials
    • Control Systems
    • Safety Instrumented System (SIS)
    • Communication
    • Fire & Gas System
  • More
    • Design
    • Tools
    • Animation
    • Basics
    • Formulas
    • Standards
    • TextBooks
    • Common
    • Software
    • Excel Tools
    • Erection & Commissioning
    • Process Fundamentals
    • Videos
    • Books
Search
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Reading: PID Tuning Recommendations based on Process Dynamics
Share
Notification Show More
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Courses
  • PLC Tutorials
  • Control Systems
Search
  • Courses
  • Videos
  • Q & A
    • Interview
    • MCQ
  • EE
    • Electronics
    • Electrical
  • Measure
    • Control Valves
    • Calibration
    • Temperature
    • Pressure
    • Flow
    • Level
    • Analyzers
    • Switches
    • Vibration
    • Solenoid Valve
  • Control
    • PLC Tutorials
    • Control Systems
    • Safety Instrumented System (SIS)
    • Communication
    • Fire & Gas System
  • More
    • Design
    • Tools
    • Animation
    • Basics
    • Formulas
    • Standards
    • TextBooks
    • Common
    • Software
    • Excel Tools
    • Erection & Commissioning
    • Process Fundamentals
    • Videos
    • Books
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools > Blog > Control Systems > PID Tuning Recommendations based on Process Dynamics

PID Tuning Recommendations based on Process Dynamics

Last updated: June 8, 2020 5:40 pm
Editorial Staff
Control Systems
No Comments
Share
2 Min Read
SHARE

Knowing which control actions to focus on first is a matter of characterizing the process (identifying whether it is self-regulating, integrating, runaway, noisy, has lag or dead time, or any combination of these traits based on an open-loop response test (Note1) ) and then selecting the best actions to fit those characteristics.

Note 1 : Recall that an open-loop response test consists of placing the loop controller in manual mode, introducing a step-change to the controller output (manipulated variable), and analyzing the time-domain response of the process variable as it reacts to that perturbation.

PID Tuning Recommendations

The following table shows some general recommendations for fitting PID tuning to different process characteristics

PID Tuning recommendations

General rules:

  • Use no derivative action if the process signal is “noisy”
  • Use proportional action sparingly if the process signal is “noisy”
  • The slower the time lag(s), the less integral action to use (a good approximation is to set the integration time τi equal to the measured lag time of the process)
  • The higher-order the time lag(s), the less proportional action (gain) to use
  • Self-regulating processes need integral action
  • Integrating processes need proportional action
  • Dead time requires a reduction of all PID constants below what would normally work

Once you have determined the basic character of the process, and understand from that characterization what the needs of the process will be regarding P, I, and/or D control actions, you may “experiment” with different tuning values of P, I, and D until you find a combination yielding robust control.

Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !

Recommended Articles

Remote Factory Acceptance Test
Proportional-only Control Theory
Network Operating System
Commissioning Checklists for Industrial Automation Systems
PLC Alarm and Trip Documentation
What is PV Tracking ?
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
Leave a Comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
208kSubscribersSubscribe
38kFollowersFollow

Categories

Recent Comments

  • William Snyder on Top Non-PLC Certification Courses for Automation Professionals
  • Kamli on Top Free PLC Software
  • Guifty Shimica on Top Non-PLC Certification Courses for Automation Professionals
  • Guifty Shimica on Top Non-PLC Certification Courses for Automation Professionals

Related Articles

Basics of Anti-Surge Control System

What is Anti Surge System?

Anti-static Wrist Straps

Anti-static Wrist Straps in Industrial Automation

Annunciator Panel

What is a Annunciator Panel?

Identify Process Variables in P&ID

Identify Process Variables in P&ID

Pressure Control Loop

Pressure Control Loop Wiring Connections

de-energized-to-safe-mode

De-energize to Safe Loop philosophy

A typical wiring diagram from Field Transmitter to Control Room

How to Wire a Field instrument to Control Room with Example

Explain how this is an example of Ratio Control?

Questions on Ratio Control System

More Articles

Flow Control Valves

Difference Between a Flow Control & a Needle Valve

Network topologies

Different Types of Network Topologies

Comparison of Absorption Chillers and Electric (Compression) Chillers

Difference between Water Cooled Chiller and Air Cooled Chiller

Paddle Wheel Flow Meter

Paddle Wheel Flow Meters – Principle, Advantages, Limitations

Role of Flow Meters in a Laboratory

Role of Flow Meters in a Laboratory

Pneumatic Valves and Cylinders Sizing

Pneumatic Valves and Cylinders Sizing – Part 1

orifice-plate

Orifice Plate Turndown ratio

Instrumentation Android App

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?