Inst ToolsInst ToolsInst Tools
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Search
  • Books
  • Software
  • Projects
  • Process
  • Tools
  • Basics
  • Formula
  • Power Plant
  • Root Cause Analysis
  • Electrical Basics
  • Animation
  • Standards
  • 4-20 mA Course
  • Siemens PLC Course
Reading: Instrument Calibration Lab Exercise
Share
Notification Show More
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Courses
  • Design
  • PLC
  • Interview
  • Control System
Search
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools > Blog > Calibration > Instrument Calibration Lab Exercise

Instrument Calibration Lab Exercise

Calibrate the instrument (“trim” both the sensor and the output) to ensure it interprets pressure accurately and outputs a 4-20 mA current.

Last updated: September 8, 2020 11:59 am
Editorial Staff
Calibration
No Comments
Share
5 Min Read
SHARE

Each team must calibrate the transmitter (“trim” both the sensor and the output) to ensure it interprets pressure accurately and outputs an accurate current.

Contents
Instrument CalibrationCalibration TableCommon Mistakes

Then, each team member must configure the transmitter for a unique range (set the LRV and URV parameters) and scale the indicator (or indicating controller) to register in the proper engineering units (e.g. a pressure transmitter ranged for 30 to 70 PSI should actually register 30 to 70 PSI back at the control room display).

The accuracy of this ranging will be checked by the instructor by applying random air pressures to the transmitter while each student verifies the indicator display.

As in all cases where an instrument must be calibrated, you will need to check the instrument’s response against one or more standards.

In this case, the ideal standard to use for setting the input pressure to the transmitter is a precision test gauge (either mechanical or electronic), and the ideal standard to use for measuring the transmitter’s electronic output signal is a multimeter configured to measure DC milliamps:

Instrument Calibration

Instrument Calibration Lab Exercise

The difference between “calibrating” a transmitter and “ranging” a transmitter is confusing to many students. With legacy-style analog transmitters, calibrating and ranging are one and the same. With modern digital instruments, calibration and ranging are separate tasks.

To calibrate a digital instrument means to subject it to a known (standard) stimulus and adjust the “trim” settings to ensure the instrument’s microprocessor accurately recognizes that stimulus condition. To “range” a digital instrument means to define the values of measurement for its 0% and 100% scale points. For more information on this distinction, refer to the “Instrument Calibration” article.

Document the accuracy of your transmitter’s sensor trim before and after adjustment in this table, at five different points throughout its sensing range using these two tables. Error in percent of span is calculated by dividing the difference between actual and ideal signal values by the span of the signal range:

Calibration Table

calibration table

When finished calibrating your team’s transmitter, be sure to place a calibration tag on it showing the range and the date it was calibrated.

A set of calibration tags are given here, which you may tape to the transmitter:

Calibration Sticker

Each student, however, must individually re-range the transmitter and the receiving instrument (indicator, controller, and/or recorder). Re-ranging a digital instrument is a brief procedure using either a HART communicator or a computer-based tool such as Yokogawa PRM,  Emerson AMS (if the instrument is connected to a host system with that software).

Each student’s ranging is confirmed by the instructor by applying random pressures to the transmitter and verifying that the indicating controller reads the same (to within ± 1% of span).

This is also a good opportunity for students to demonstrate the use of the transmitter’s valve manifold, showing how to “block in” the transmitter so it does not “see” process pressure.

Common Mistakes

  • Failing to closely inspect pressure regulators before connecting them to an air source (e.g. connecting the air supply to the “out” port)
  • Improper pipe/tube fitting installation (e.g. trying to thread tube fittings into pipe fittings and vice- versa).
  • Choosing a calibration (“trim”) range that is substantially less than the final range of measurement when installed. As a general rule, you should trim the sensor of the transmitter to cover the broadest range of measurement possible with your calibration equipment.
  • Choosing a poor-accuracy calibration standard (e.g. trying to calibrate your $1500 precision Rosemount pressure transmitter to ± 0.1 PSI using a $30 pressure gauge that only reads to the nearest 5 PSI!).
  • Ignoring the mathematical signs (+ or −) of error calculations.
  • Neglecting to place a calibration tag on the transmitter after “trimming” it.

Share your answers with us through the below comments section.

Read Next:

  • Smart Transmitter Tutorial
  • Gauge Analog Scales
  • Instrument Zero Calibration
  • Correct use of Ohm’s Law
  • Smart Transmitter LRV & URV

Credits: Tony R. Kuphaldt

Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !

Continue Reading

Level Transmitter Calibration Procedure
Instrument Maintenance and Calibration System
Load Cell Healthiness Checks
Pressure Transmitter Calibration Procedure
Step by Step Guide for Gas Flow Meter Calibration
Importance of Unit Measurement
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
Leave a Comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
210kSubscribersSubscribe
38kFollowersFollow

Categories

Explore More

Calibrating Level Transmitter with Remote Seals
Single Position Calibration of Temperature Bath
Smart Transmitter Calibration Tutorial Part 3
Calibration of Measuring Instruments – Significance, Costs & Risks
Calibration : Up-tests and Down-tests
How to Create Calibration Records?
Displacer Level Transmitter Calibration using Water & Process Liquid
How to Calibrate pH Electrode?

Keep Learning

Calibration Instruments

Basics of Calibration

Multiple Position Calibration of Temperature Chamber (Mapping)

Multiple Position Calibration of Temperature Chamber

Temperature Switch Calibration

How to Calibrate Temperature Switch? – Instrument Basics

DP Transmitter Capillary arrangement

DP Transmitter Interface Level Measurement Principle, Limitations, Selection, Installation, Design & Calibration

List of Documents Required for Testing and Calibration Laboratory

List of Documents Required for Testing and Calibration Laboratories

Sensor Trim and Output Trim in Smart Transmitter

What is Sensor Trim and Output Trim in Smart Transmitter?

Capacitance Level measurement principle

Capacitance Level Sensor Principle, Limitations, Installation & Calibration

DP type Flow Transmitter Calibration

DP type Flow Transmitter Preventive Maintenance and Calibration

Learn More

What is insulation

What is insulation? How to Choose the Insulation Material?

Transformer Efficiency

Transformer Efficiency

Mechanical Vibration Switch

Vibration Switch Working Principle

Reverse Voltage Characteristics of Photo diode

Characteristics of Photo diode

Create Ladder Diagram from Boolean Logic

Create Ladder Diagram from Boolean Logic

Omron PLC Car Parking Program

OMRON PLC Tutorial: Car Parking System Application

How to Design a Motor Faceplate in Graphics - SCADA Tutorials

How to Design a Motor Faceplate in Graphics? – SCADA Tutorials

Vortex flow meter Bluff Body

Types of Vortex Flow Meter Sensors

Menu

  • About
  • Privacy Policy
  • Copyright

Quick Links

  • Learn PLC
  • Helping Hand
  • Part Time Job

YouTube Subscribe

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?