Inst ToolsInst ToolsInst Tools
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Search
  • Books
  • Software
  • Projects
  • Process
  • Tools
  • Basics
  • Formula
  • Power Plant
  • Root Cause Analysis
  • Electrical Basics
  • Animation
  • Standards
  • 4-20 mA Course
  • Siemens PLC Course
Reading: Heuristic PID Tuning Procedure
Share
Notification Show More
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Courses
  • Design
  • PLC
  • Interview
  • Control System
Search
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools > Blog > Control Systems > Heuristic PID Tuning Procedure

Heuristic PID Tuning Procedure

Last updated: November 11, 2018 7:10 am
Editorial Staff
Control Systems
No Comments
Share
2 Min Read
SHARE

From the initial open-loop (manual output step-change) test, we could see this process contains multiple lags in addition to about 2 minutes of dead time. Both of these factors tend to limit the amount of gain we can use in the controller before the process oscillates. Both Ziegler-Nichols tuning attempts confirmed this fact, which led me to try much lower gain values in my initial heuristic tests.

Given the self-regulating nature of the process, I knew the controller needed integral action, but once again the aggressiveness of this action would be necessarily limited by the lag and dead times. Derivative action, however, would prove to be useful in its ability to help “cancel” lags, so I suspected my tuning would consist of relatively tame proportional and integral values, with a relatively aggressive derivative value.

After some experimenting, the values I arrived at were 1.5 (gain), 10 minutes (integral), and 5 minutes (derivative). These tuning values represent a proportional action only one-third as aggressive as the least-aggressive Ziegler-Nichols recommendation, an integral action less than half as aggressive as the Ziegler-Nichols recommendations, and a derivative action five times more aggressive than the most aggressive Ziegler-Nichols recommendation. The results of these tuning values in automatic mode are shown here:

Heuristic PID Tuning Procedure

With this PID tuning, the process responded with much less overshoot of setpoint than with the results of either Ziegler-Nichols technique.

Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !

Continue Reading

DCS System Layout and its Different Parts
DCS Program to Maintain Draft in Furnace
Control System Architecture
What is Nest Loading? – DCS and PLC Control Systems
ICS Control System Security
Relation Control System
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
Leave a Comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
210kSubscribersSubscribe
38kFollowersFollow

Categories

Explore More

What is Process Override Switch (POS)?
Definitions of Electrical Grounding
Control Systems Interview Questions & Answers
Distributed Control System Objective Questions
Process Control & Safety Systems Logics Implementing Cycle
What is Indicator ?
Three Element Drum Level Control System
Yokogawa DCS Tutorials – Configuration of Analog Input (Transmitter)

Keep Learning

On-Off Controller example

ON-OFF Controller Principle

Readings Mismatch between Field & Control Room

Readings Mismatch between Field & Control Room ? Why

What is a Network Switch?

Network Switch Requirement in SCADA and DCS Architecture

liquid flow control loop

Liquid Flow Control Loop Controller Action

Remote User Authentication

Security of Industrial Automation Systems

Simple Loop with Local Indication

Instrument Loop Test Requirements and Operation Procedures

Field Instrument package

Package System Architecture – Control & Instrumentation

DCS

DCS

Learn More

PLC Program for Trash Compactor

PLC Program for Trash Compactor

Torque Tube Level Measurement Principle

Torque Tube Level Measurement Principle

Codesys function block example

Create a User-Defined Function Block in Codesys

What is Barring Gear Logic? Why is it Required in the Steam Turbine?

Distributed Control System & Motor Control Center Interface Philosophy

Distributed Control System & Motor Control Center Interface Philosophy

gauge’s bourdon tube

Pressure Gauges : Remote and Chemical Seals

PLC Example on Switch Program with Timers

PLC Example on Switch Program with Timers

Block Diagram

Block Diagram

Menu

  • About
  • Privacy Policy
  • Copyright

Quick Links

  • Learn PLC
  • Helping Hand
  • Part Time Job

YouTube Subscribe

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?