Inst ToolsInst ToolsInst Tools
  • Courses
  • Videos
  • Q & A
    • Interview
      • Instrumentation
      • Electronics
      • Electrical
      • Practical Questions
    • MCQ
      • Instrumentation MCQ
      • Electrical MCQ
      • Electronics MCQ
      • Control Systems MCQ
      • Analog Electronics MCQ
      • Digital Electronics MCQ
      • Power Electronics MCQ
      • Microprocessor MCQ
      • Multiple Choice Questions
  • EE
    • Electronics
      • Electronics Q & A
      • Electronic Basics
      • Electronic Devices & Circuits
      • Electronics Animation
      • Digital Electronics
    • Electrical
      • Electrical Basics
      • Electrical Q & A
      • Power Electronics
      • Electrical Machines
      • Electrical Animation
      • Power Systems
      • Switchgear & Protection
      • Transmission & Distribution
  • Measure
    • Control Valves
    • Calibration
    • Temperature
    • Pressure
    • Flow
    • Level
    • Analyzers
    • Switches
    • Vibration
    • Solenoid Valve
  • Control
    • PLC Tutorials
    • Control Systems
    • Safety Instrumented System (SIS)
    • Communication
    • Fire & Gas System
  • More
    • Design
    • Tools
    • Animation
    • Basics
    • Formulas
    • Standards
    • TextBooks
    • Common
    • Software
    • Excel Tools
    • Erection & Commissioning
    • Process Fundamentals
    • Videos
    • Books
Search
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Reading: Compressor Cracked Shaft Spacers
Share
Notification Show More
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Courses
  • PLC Tutorials
  • Control Systems
Search
  • Courses
  • Videos
  • Q & A
    • Interview
    • MCQ
  • EE
    • Electronics
    • Electrical
  • Measure
    • Control Valves
    • Calibration
    • Temperature
    • Pressure
    • Flow
    • Level
    • Analyzers
    • Switches
    • Vibration
    • Solenoid Valve
  • Control
    • PLC Tutorials
    • Control Systems
    • Safety Instrumented System (SIS)
    • Communication
    • Fire & Gas System
  • More
    • Design
    • Tools
    • Animation
    • Basics
    • Formulas
    • Standards
    • TextBooks
    • Common
    • Software
    • Excel Tools
    • Erection & Commissioning
    • Process Fundamentals
    • Videos
    • Books
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools > Blog > Root Cause Analysis (RCA) > Compressor Cracked Shaft Spacers

Compressor Cracked Shaft Spacers

Process Air Compressor cracked shaft spacers; the plant Root Cause Analyzed, made the spacers and heat treated to lesser hardness and fitted on the spare and running rotor.

Last updated: September 28, 2022 3:20 pm
S Raghava Chari
Root Cause Analysis (RCA)
No Comments
Share
6 Min Read
SHARE

Root Cause Analysis (RCA): 8000 RPM Process Air Compressor (K-602) cracked shaft spacers; the plant Root Cause Analyzed, made the spacers and heat treated to lesser hardness and fitted on the spare and running rotor.

Contents
Compressor Cracked Shaft Spacers ProblemRotor B’s repair at the Indian shopPlant’s Engineer RepairsIn-house repair benefits
Article Type:Root Cause Analysis (RCA)
Category:Mechanical
Equipment Type:High Speed, Hi KW Major Rotating Machines
Author:S. Raghava Chari

Note: This root cause analysis (RCA) is from real-time scenarios that happened in industries during the tenure of one or two decades ago. These articles will help you to improve your troubleshooting skills and knowledge.

Compressor Cracked Shaft Spacers Problem

Crew dissembling K-602 during the first TA found rotor shaft all spacers cracked up to the ID for 50 to 75 mm long axially. The plant installed the spare rotor B.

Accepting the Italian manufacturer advise, the plant sent the defective rotor A to the Indian collaborator for repairs.

Rotor B’s repair at the Indian shop

The plant root cause analyzed and felt the too hard 450 BHN hardness was the reason for the cracks and suggested reducing the hardness to 250 BHN.

The manufacturer accepted the recommendation and suggested getting the job done by their Indian licensee (IL).

The Indian licensee suggested the plant supplying the 250-BHN spacers as their shops are too much loaded and they cannot do the job within the plant given schedule.

The plant workshop made the sleeves to the drawings specified tolerances and supplied them to the IL. Finding the IL not taking up the task, they deputed an engineer to expedite and return with the repaired rotor A.

The expediting engineer reported a week later no matter how hard chased, the IL will not take up the job soon; rather he can do it in the plant workshop itself, being confident after witnessing several factory spacer fit ups and the IL supervisors letting him do it few times.

As the 2‑yearly TA was nearing, the plant cancelled the IL and assigned the engineer the task.

Plant’s Engineer Repairs

Plant’s engineer repaired Rotor A in the plant shop thus:

  1. Screw in an eye bolt to the rotor end A; vertically sling suspend the rotor to a crane hook. Carefully and uniformly flame heat A-end wheel hub periphery to 250±10o C checking frequently with a contact pyrometer. Few slight mallet-taps uniformly around the wheel hub periphery drops the wheel
  2. Remove this way all the wheels and spacers one by one and label to fit back the same way
  3. Inspectors balanced the bare shaft
  4. During items 1 to 3 progress the engineer’s assistant filled oil 50% the improvised oil heater. It is a 200-liter barrel cut into two with 10 mm dia holes drilled all over 10-mm thick plate well supported 100 mm above the drum bottom. Plant electrical and inst crew rigged up the heaters, a churner, below the plate and temperature controls He soaked middle two wheels and the spacer between them.
  5. He discarded the old spacers. Soaked the removed two wheels and two new spacers allow 1 min soaking time per mm metal thickness. He removed the middle spacer, wiped the oil well, and made sure temp > 260O C all over and fitted in the middle. Similarly fitted one wheel either side
  6. He cooled the assembly using a fan
  7. Inspectors balanced the partial rotor assembly
  8. Likewise, he assembled two more wheels and spacers progressively
  9. Inspectors balanced the partial assembly after two wheels mounting
  10. Proceeding this way, he assembled and balanced the entire rotor step by step
  11. The rotor was ready in two days working general shift only
  12. Crew fitted the shop revamped Rotor A K 602 during the turnaround
  13. Shaft vibrations well below limits and K 602 excellent performance delighted everyone.  
  14. Inspectors finding no cracked spacers during an opportune shutdown inspection 6-months later delighted everyone even more

Another engineer who worked with the first changed the removed from the compressor Rotor B sleeves and returned it to the warehouse.

In-house repair benefits

In-house repair benefits are:

  1. The spare rotor was ready and eliminated the ‘no spare rotor’ risk
  2. The IL charged huge costs saved
  3. The crew were proud of accomplishing a challenging task, usually left to the manufacturers

Author: S. Raghava Chari

Do you face any similar issues? Share with us through the below comments section.

If you liked this article, then please subscribe to our YouTube Channel for Instrumentation, Electrical, PLC, and SCADA video tutorials.

You can also follow us on Facebook and Twitter to receive daily updates.

Read Next:

  • Process Air Compressor Overhauls
  • Heat Exchanger Root Cause Analysis
  • Mechanical Variable Speed Drives RCA
  • Compressor Case Discharge Temperature
  • 8000 RPM 8000 kW Turbine Problem
Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !

Recommended Articles

8000 RPM 8000 kW Turbine Problem
Control Valves – Repeat Actuator Diaphragm Bursts
Compressor IP Case Discharge Temperature Gradually Increases
Root Cause Analysis for Tank Overflow due to Valve Problem
Erratic Stroking Control Valves Delaying the Shutdown Plant Restart
Reformer Fan Bearing Change Times cut by 90%
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
Leave a Comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
208kSubscribersSubscribe
38kFollowersFollow

Categories

Recent Comments

  • William Snyder on Top Non-PLC Certification Courses for Automation Professionals
  • Kamli on Top Free PLC Software
  • Guifty Shimica on Top Non-PLC Certification Courses for Automation Professionals
  • Guifty Shimica on Top Non-PLC Certification Courses for Automation Professionals

Related Articles

Plunger Pump Drive

Too Low Efficiency Torque Converter Elimination Attempt

Pump Mechanical Seal and thrust bearing Problem

Pump 3-monthly Seal Leaks threaten entire Plant Shut down Indefinitely

Demister Pads Problem

Problems with Demister Pads – Root Cause Analysis (RCA)

Target Flow Transmitter Problem

Unreliable Ammonia Flow Transmitter Reading and Problems

NH3 Plant Turbo-compressor Sudden Rise in Temperature

NH3 Plant Turbo-compressor Sudden Rise in Temperature

Process Air Compressor Overhauls Eliminated

Process Air Compressor too Frequent & too Lengthy Overhauls Eliminated

Welding Machine Fail in Dusty and Corrosive Areas

Welding Machine Fail in Dusty and Corrosive Areas

Thermocouple Extension Lead Minimizer Circuit

Thermocouple Wires and Extension Lead Issues

More Articles

Proportional Control Theory

Proportional-only Offset

Design Counters in PLC Programming With a Move Instruction

Design Counters in PLC Programming With a Move Instruction

Current and Voltage analogy

Current and Voltage Principle Animation

What is Gas Chromatography

What is Gas Chromatography?

Power Electronics Objective Questions

Sequence Controller Objective Questions

Electrical Machines Questions and Answers

Induction Motor Phasor Diagram

Programmable Logic Controller (PLC) Questions and Answers

Programmable Logic Controller (PLC) Questions and Answers – 3

Air Pressure Regulator cut-away diagram

Air Pressure Regulator Questions

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?