Home » Air Pressure Regulator Questions
Control Valves Practical Questions

Air Pressure Regulator Questions

Since precision pneumatic instruments operate best when their supply air pressure is at a constant pressure, it is necessary to regulate the fluctuating air pressure from the receiver vessel down to a lower, more constant level for the instrument. The device designed to do this is called an air pressure regulator.

Air Pressure Regulator

A cut-away diagram of an air pressure regulator is shown here:

Air Pressure Regulator cut-away diagram

The wedge-shaped plug can move down to open the passageway and allow more of the high-pressure air to enter the chamber below the diaphragm, and can move up to close off the passageway and reduce the flow of incoming air into the diaphragm chamber. The regulation setpoint is adjustable by the position of the threaded rod pressing down on the diaphragm through a spring.

Describe how this air pressure regulator functions. Suppose that the outlet air pressure is below setpoint. How does this mechanism respond to bring the outlet pressure back up to where it is supposed to be?

If the outlet air pressure rises to too high a level, how does the mechanism compensate to reduce it back down to the setpoint level?


If the chamber air pressure is too high, the excess pressure will exert more force on the underside of the diaphragm to push it up, thus moving the plug up and closing off the passageway, reducing the air supply flow:

Pressure Regulator

As the outlet air continues to flow out of the regulator, the chamber pressure will eventually drop back down to setpoint, and the passageway will open again.

If the chamber air pressure is too low, the reduced force on the underside of the diaphragm cannot resist the spring force from above, and the plug moves down. This opens up the passageway, allowing more of the supply air to enter the chamber and increase the pressure:

Pneumatic Pressure Regulator

In short, the opposing forces of spring pressure (and atmospheric air pressure) above the diaphragm, versus the chamber pressure below the diaphragm, act to move the plug up or down as needed to maintain the chamber pressure approximately equal to the equivalent pressure of atmospheric air + spring force on the diaphragm.

The threaded rod with an attached turn handle adjusts the compression of the spring above the diaphragm, and changes the pressure regulation setpoint. Screwing the threaded rod in the downward direction will increase the spring force on the top of the diaphragm and likewise increase the equilibrium point between the three forces, increasing the output air pressure regulation setpoint as a consequence.

Screwing the threaded rod in the upward direction will decrease the spring force on the diaphragm’s top, decreasing the equilibrium point between the three forces and decreasing the pressure setpoint.

Questions for you:

1. Suppose the spring inside this regulator were to break. What effect would this have on the regulator’s output pressure, and why?

2. Suppose the vent hole were to plug. What effect would this have on the regulator’s output pressure, and why?

Share your answers with us through below comments section.

Read Next:

Credits: Tony R. Kuphaldt

Share With Your Friends

Related Articles

Find Thermocouple Ouput Voltage

S Bharadwaj Reddy

Control Valve Positioner Working Principle

S Bharadwaj Reddy

Compare Relief Valve and Safety Valve

S Bharadwaj Reddy

Identify Faults in PID Control Loop

S Bharadwaj Reddy

How Manometer Measures Differential Pressure for Different Fluids?

S Bharadwaj Reddy

Practical Level Sensors Questions and Answers

S Bharadwaj Reddy

Leave a Comment

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Accept Read More

Air Pressure Regulator Questions

WordPress Image Lightbox
Send this to a friend