Inst ToolsInst ToolsInst Tools
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Search
  • Books
  • Software
  • Projects
  • Process
  • Tools
  • Basics
  • Formula
  • Power Plant
  • Root Cause Analysis
  • Electrical Basics
  • Animation
  • Standards
  • 4-20 mA Course
  • Siemens PLC Course
Reading: Types of Batteries
Share
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Courses
  • Design
  • PLC
  • Interview
  • Control System
Search
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools > Blog > Electrical Theory > Types of Batteries

Types of Batteries

Last updated: July 27, 2018 8:41 pm
Editorial Staff
Electrical Theory
No Comments
Share
5 Min Read
SHARE

The lead-acid battery is the most common type of battery in use today. There are other types of storage batteries, each having certain advantages.

Types of batteries are :

  1. Carbon-zinc cell
  2. Alkaline cell
  3. Nickel-cadmium cell
  4. Edison cell
  5. Mercury cell

Wet and Dry Cells

Wet and dry cells are classified by the type of electrolyte the battery uses. The electrolyte of a cell may be a liquid or a paste. If the electrolyte is a paste, the cell is referred to as a dry cell. If the electrolyte is a solution, the cell is called a wet cell.

Carbon-Zinc Cell

The carbon-zinc cell is one of the oldest and most widely used types of dry cells. The carbon in the battery is in the form of a rod in the center of the cell which acts as the positive terminal. The case is made from zinc and acts as the negative electrode. The electrolyte for this type of cell is a chemical paste-like mixture which is housed between the carbon electrode and the zinc case. The cell is then sealed to prevent any of the liquid in the paste from evaporating.

The advantage of a carbon-zinc battery is that it is durable and very inexpensive to produce. The cell voltage for this type of cell is about 1.5 volts.

Alkaline Cell

The alkaline cell is so called because it has an alkaline electrolyte of potassium hydroxide. The negative electrode is made from zinc, and the positive electrode is made of manganese dioxide. The typical alkaline cell generates 1.5 volts. The alkaline cell has the advantage of an extended life over that of a carbon-zinc cell of the same size; however, it is usually more expensive.

Nickel-Cadmium Cell

The nickel-cadmium cell is a secondary cell, and the electrolyte is potassium hydroxide. The negative electrode is made of nickel hydroxide, and the positive electrode is made of cadmium hydroxide. The nominal voltage of a nickel-cadmium cell is 1.25 volts.

The nickel-cadmium battery has the advantage of being a dry cell that is a true storage battery with a reversible chemical reaction (i.e., it can be recharged). The nickel-cadmium battery is a rugged, dependable battery. It gives dependable service under extreme conditions of temperature, shock, and vibration. Due to its dependability, it is ideally suited for use in portable communications equipment.

Edison Cell

In an edison cell the positive plate consists of nickel and nickel hydrate, and the negative plate is made of iron. The electrolyte is an alkaline. Typical voltage output is 1.4 volts, and it should be recharged when it reaches 1.0 volts. The edison cell has the advantage of being a lighter and more rugged secondary cell than a lead-acid storage battery.

Mercury Cell

Mercury cells come in two types; one is a flat cell that is shaped like a button, while the other is a cylindrical cell that looks like a regular flashlight battery. Each cell produces about 1.35 volts. These cells are very rugged and have a relatively long shelf life. The mercury cell has the advantage of maintaining a fairly constant output under varying load conditions. For this reason, they are used in products such as electric watches, hearing aids, cameras, and test instruments.

Battery Types Summary

  • If the electrolyte is a paste, the cell is referred to as a dry cell. If the electrolyte is a solution, the cell is called a wet cell.
  • The advantage of a carbon-zinc battery is that it is durable and very inexpensive to produce.
  • The alkaline cell has the advantage of an extended life over that of a carbon-zinc cell of the same size.
  • The nickel-cadmium battery has the advantage of being a dry cell that is a true storage battery with a reversible chemical reaction.
  • The edison cell has the advantage of being a lighter and more rugged secondary cell than a lead-acid storage battery.
  • The mercury cell has the advantage of maintaining a fairly constant output under varying load conditions.
Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !

Continue Reading

Conductor, Insulator, Resistor and Current Flow
Motor Controllers
DC Motor Speed
4-Wire, Three-Phase Wye Wiring System
AC Generation
Electrical Diagrams and Schematics
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
Leave a Comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
210kSubscribersSubscribe
38kFollowersFollow

Categories

Explore More

Shunt-Wound DC Generators
Magnetic Circuits
Capacitance
Resistance in Parallel Circuits
Voltage and Current Phase Relationships in an Inductive Circuit
Block Diagram
Series Short Circuit Faults
Shunt-Wound Motor Operation

Keep Learning

Transformer Tap changer

Transformer Mutual Induction

Current in a Capacitor

Capacitance and Capacitive Reactance

D’Arsonval Movement

D’Arsonval Meter Movement

Electron Flow Through Battery

Batteries Theory

Simple RC Circuit

Impedance in RC Circuits

LVR Motor Controller Operation

Low Voltage Protection (LVP) and Low Voltage Release (LVR)

Motor Rotating Magnetic Field

AC Motor Theory

How to Measure Specific Gravity of Battery

How to Measure Specific Gravity of Battery

Learn More

Electrical Machines Objective Questions

Electrical Machines MCQ Series 20

Flow meter Turndown Ratio

Importance of Flow Meter Turndown Ratio

RDOL starter

What are DOL and RDOL starters? Advantages, Disadvantages

How to Troubleshoot a PLC System

How to Troubleshoot a PLC System?

Differential Pressure Measurement across Baghouse

Differential Pressure Measurement across Baghouse

Motor Disconnector Switch

What is a Motor Disconnector Switch? – Purpose, Principle, Factors

hygrometer for measuring moisture

Difference Between Absolute and Relative Humidity

Electrical Machines Objective Questions

Electrical Machines MCQ Series 2

Menu

  • About
  • Privacy Policy
  • Copyright

Quick Links

  • Learn PLC
  • Helping Hand
  • Part Time Job

YouTube Subscribe

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?