Inst ToolsInst ToolsInst Tools
  • Ask
  • Courses
  • Videos
  • Q & A
    • Interview
      • Instrumentation
      • Electronics
      • Electrical
      • Practical Questions
    • MCQ
      • Instrumentation MCQ
      • Electrical MCQ
      • Electronics MCQ
      • Control Systems MCQ
      • Analog Electronics MCQ
      • Digital Electronics MCQ
      • Power Electronics MCQ
      • Microprocessor MCQ
      • Multiple Choice Questions
  • EE
    • Electronics
      • Electronics Q & A
      • Electronic Basics
      • Electronic Devices & Circuits
      • Electronics Animation
      • Digital Electronics
    • Electrical
      • Electrical Basics
      • Electrical Q & A
      • Power Electronics
      • Electrical Machines
      • Electrical Animation
      • Power Systems
      • Switchgear & Protection
      • Transmission & Distribution
  • Measure
    • Control Valves
    • Calibration
    • Temperature
    • Pressure
    • Flow
    • Level
    • Analyzers
    • Switches
    • Vibration
    • Solenoid Valve
  • Control
    • PLC Tutorials
    • Control Systems
    • Safety Instrumented System (SIS)
    • Communication
    • Fire & Gas System
  • More
    • Design
    • Tools
    • Animation
    • Basics
    • Formulas
    • Standards
    • TextBooks
    • Common
    • Software
    • Excel Tools
    • Erection & Commissioning
    • Process Fundamentals
    • Videos
    • Books
Search
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Reading: #12 PLC Best Practices – Validate Inputs based on Physical Plausibility
Share
Notification Show More
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Courses
  • PLC Tutorials
  • Control Systems
Search
  • Ask
  • Courses
  • Videos
  • Q & A
    • Interview
    • MCQ
  • EE
    • Electronics
    • Electrical
  • Measure
    • Control Valves
    • Calibration
    • Temperature
    • Pressure
    • Flow
    • Level
    • Analyzers
    • Switches
    • Vibration
    • Solenoid Valve
  • Control
    • PLC Tutorials
    • Control Systems
    • Safety Instrumented System (SIS)
    • Communication
    • Fire & Gas System
  • More
    • Design
    • Tools
    • Animation
    • Basics
    • Formulas
    • Standards
    • TextBooks
    • Common
    • Software
    • Excel Tools
    • Erection & Commissioning
    • Process Fundamentals
    • Videos
    • Books
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools > Blog > PLC Tutorials > #12 PLC Best Practices – Validate Inputs based on Physical Plausibility

#12 PLC Best Practices – Validate Inputs based on Physical Plausibility

Ensure operators can only input what’s practical or physically feasible in the process. Learn the PLC's best rules.

Last updated: September 22, 2021 7:18 am
Editorial Staff
PLC Tutorials
No Comments
Share
4 Min Read
SHARE

Ensure operators can only input what’s practical or physically feasible in the process. Set a timer for an operation to the duration it should physically take. Consider alerting when there are deviations. Also, alert when there is unexpected inactivity.

Contents
Validate PLC Inputs1) Monitor expected physical durations2) Monitor expected physical repeating activityExamplesa) Monitor expected physical durationsb) Monitor expected physical repeating activityc) Limit operator entry for set points to what’s practical/physically possible
Security ObjectiveTarget Group
Integrity of I/O valuesIntegration / Maintenance Service Provider

Validate PLC Inputs

1) Monitor expected physical durations

If the operation takes longer than expected to go from one extreme to the other, that is worthy of an alarm. Alternatively, if it does it too quickly, that is worthy of an alarm too.

A simple solution could be a step-timeout alert. This would be useful for sequence/step-controlled tasks.

For example, the step “move object from A to B” takes 5 sec from the start of the step until the transition condition (sensor: object arrived at B) is met.

If the condition is met significantly too early or too late, the step-timeout is alert triggered.

2) Monitor expected physical repeating activity

Physical plausibility checking can also mean alert for physically implausible inactivity:

If there is an expectation of a regular, repeating cycle of events (e.g., batches, diurnal patterns), an inactivity timer would alert if something which is expected to change (discrete or analog value) remains static for far too long.

Examples

a) Monitor expected physical durations

The gates on a dam takes a certain time to go from fully closed to fully open

In a wastewater utility, a wet well takes a certain time to fill

b) Monitor expected physical repeating activity

Manufacturing process or pipeline batching should regularly cycle between control ranges or operating modes.

Municipal wastewater treatment plants typically have a diurnal cycle of activity/pattern of influent flow rates.

c) Limit operator entry for set points to what’s practical/physically possible

e.g., Oldsmar Florida case allowed for operator input that’s a) thousands of times more than what was typically needed b) that’s physically not possible.

Try to configure the operational limits in the PLC code wherever possible instead of using HMI scripts.

Why?

Beneficial for…?Why?
      Security1. Deviations can indicate an actuator was already in the middle of a travel state or that someone is trying to fake the I/O, e.g., by doing a replay attack.

2. Inactivity alerts facilitate monitoring for frozen or forced constant values which could be the result of system or device tampering.
      Reliability1. Deviations give you an early alert for broken equipment due to electrical or mechanical failures.

2. Inactivity alerts help flag measurements or system control loops which may be failing (thus static) due to physical device fault or an issue with the logic control algorithm or failed/improper operator input.
Maintenance 

References

Standard/frameworkMapping
MITRE ATT&CK for ICSTactic:  TA010 – Impair Process Control
Technique:  T0806 – Brute Force I/O
ISA 62443-3-3SR 3.5: Input Validation
SR 3.6: Deterministic Output
ISA 62443-4-2CR 3.5: Input Validation
CR 3.6: Deterministic Output
MITRE CWECWE-754: Improper Check for Unusual or Exceptional Conditions

Source: PLC Security

Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !
While Do Statement in Structured Text PLC Program
Basics of Ladder Diagram in PLC Programming
Do’s and Don’ts in PLC
OB1 – Main Cyclic Organization Block in TIA Portal
PLC Program for Sequential Motor Control
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
Leave a Comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
208kSubscribersSubscribe
38kFollowersFollow

Categories

Recent Comments

  • Guifty Shimica on Top Non-PLC Certification Courses for Automation Professionals
  • Guifty Shimica on Top Non-PLC Certification Courses for Automation Professionals
  • MIHARITSOA Aina Sitraka on Top Non-PLC Certification Courses for Automation Professionals
  • Vaishnavi on Free Instrumentation Course for Trainee Engineers

Related Articles

Scaling in PLC

PLC Ladder Logic for Sensor Scaling with Offset

PLC Control for Baking Machines Logic

PLC Programming for Baking with Auto and Manual Modes

Testing and Validation in PLC Development

Testing and Validation in PLC Development

Your First Steps Through STL Language

Your First Steps Through STL Language

Wet Contacts and Dry Contacts in PLC Systems

Wet Contacts and Dry Contacts in PLC Systems

How to Delay a Sensor Signal in PLC?

How to Delay a Sensor Signal in PLC?

Push button Motor PLC Logic

Push button Motor PLC Logic

LIFO Instruction in Allen Bradley PLC Programming

LIFO Instruction in PLC

More Articles

Construction of Megger

What is a Megger? Principle, Advantages, Disadvantages, Applications

Use of line reactors

Use of line reactors

Automatic Car Washing Process using PLC Ladder Diagram

Automatic Car Washing using PLC

Rotameter

What is a Variable Area Flow Meter?

Ultrasonic Level Measurement Questions and Answers

Ultrasonic Level Measurement Questions and Answers

PLC Program to control level of parallel tanks

Parallel Tanks Level Control using PLC Ladder Diagram Tutorial

Differential Pressure Transmitter

Calculate Process Variable from 4-20mA using Fraction of Measurement

Open Circuit without Freewheeling diode

Freewheeling Diode Working Principle

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?