Inst ToolsInst ToolsInst Tools
  • Ask
  • Courses
  • Videos
  • Q & A
    • Interview
      • Instrumentation
      • Electronics
      • Electrical
      • Practical Questions
    • MCQ
      • Instrumentation MCQ
      • Electrical MCQ
      • Electronics MCQ
      • Control Systems MCQ
      • Analog Electronics MCQ
      • Digital Electronics MCQ
      • Power Electronics MCQ
      • Microprocessor MCQ
      • Multiple Choice Questions
  • EE
    • Electronics
      • Electronics Q & A
      • Electronic Basics
      • Electronic Devices & Circuits
      • Electronics Animation
      • Digital Electronics
    • Electrical
      • Electrical Basics
      • Electrical Q & A
      • Power Electronics
      • Electrical Machines
      • Electrical Animation
      • Power Systems
      • Switchgear & Protection
      • Transmission & Distribution
  • Measure
    • Control Valves
    • Calibration
    • Temperature
    • Pressure
    • Flow
    • Level
    • Analyzers
    • Switches
    • Vibration
    • Solenoid Valve
  • Control
    • PLC Tutorials
    • Control Systems
    • Safety Instrumented System (SIS)
    • Communication
    • Fire & Gas System
  • More
    • Design
    • Tools
    • Animation
    • Basics
    • Formulas
    • Standards
    • TextBooks
    • Common
    • Software
    • Excel Tools
    • Erection & Commissioning
    • Process Fundamentals
    • Videos
    • Books
Search
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Reading: What is a Non-Linear Device? Example – Advantages
Share
Notification Show More
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Courses
  • PLC Tutorials
  • Control Systems
Search
  • Ask
  • Courses
  • Videos
  • Q & A
    • Interview
    • MCQ
  • EE
    • Electronics
    • Electrical
  • Measure
    • Control Valves
    • Calibration
    • Temperature
    • Pressure
    • Flow
    • Level
    • Analyzers
    • Switches
    • Vibration
    • Solenoid Valve
  • Control
    • PLC Tutorials
    • Control Systems
    • Safety Instrumented System (SIS)
    • Communication
    • Fire & Gas System
  • More
    • Design
    • Tools
    • Animation
    • Basics
    • Formulas
    • Standards
    • TextBooks
    • Common
    • Software
    • Excel Tools
    • Erection & Commissioning
    • Process Fundamentals
    • Videos
    • Books
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools > Blog > Electronic Basics > What is a Non-Linear Device? Example – Advantages

What is a Non-Linear Device? Example – Advantages

A non-linear device is one where the relationship between voltage and current is not linear. Examples are semiconductors like transistors.

Last updated: February 8, 2023 12:00 pm
Viral Nagda
Electronic Basics
No Comments
Share
5 Min Read
SHARE

Electronics have an important relationship between current, voltage, and resistance, which is famously called Ohm’s law.

Contents
What is a Non-Linear Device?Example of Linear DeviceExample of a Non-Linear DeviceAdvantages of Non-Linear Devices

Ohm’s law states that voltage is equal to current multiplied by resistance. Based on that, in an electronic circuit, there are two types of devices used – linear and non-linear.

In this post, we will learn the concept of a non-linear device.

What is a Non-Linear Device?

As the name implies, a non-linear device is one where the relationship between voltage and current is not linear. In linear devices, the output signal is in line with the input signal.

But, in a non-linear device, the relationship between input power and output power does not plot on a graph as a straight line.

What is a Non-Linear Device

Example of Linear Device

For understanding this, let us take a simple example of Ohm’s law.

Suppose the resistance of a device is 2 ohms. The voltage applied is 10V. As per the formula, the current drawn will be 5A. Now, consider the resistance to be the same at 2 ohms; the voltage applied is now 20V. So, the current drawn will be 10A.

In any case, you see that the ratio between voltage and current is maintained. This is a linear device, in which its resistance does not vary in spite of any condition, be it temperature or any other external condition (can be current also).

In a linear device, all the basic circuit parameters—such as resistance, inductance, capacitance, waveform, and frequency—do not change with respect to current and voltage.

Example of a Non-Linear Device

Let us study the second scenario now. Suppose the resistance of a device is 2 ohms. The voltage applied is 10V. As per the formula, the current drawn will be 5A.

Now, consider the resistance to be increasing with an increase in current or temperature. So, for a voltage applied at 20V, if the resistance increases to 4 ohms, then the current drawn will be 5A.

In any case, you see that the ratio between voltage and current is not maintained. This is a non-linear device, in which its resistance varies in many conditions, be it temperature or any other external condition (can be current also). Due to this, the signal relation is also not in conjunction.

In a non-linear device, any of the basic circuit parameters—such as resistance, inductance, capacitance, waveform, and frequency—can change with respect to current and voltage.

Advantages of Non-Linear Devices

A non-linear relationship is useful in many electronic applications. The most commonly available non-linear devices are semiconductors like transistors, diodes, and inductors. In them, the current starts to decline as the voltage increases; or inversely, it increases at a very slow rate as compared to increasing voltage.

Most modern circuits are run at a high enough signal level that they exhibit a nonlinear response. Consider a transistor, the fundamental building block of modern computing.

We take advantage of the nonlinear response in its output current to define digital signals in a digital system. This nonlinear response leads to saturation in the current output, corresponding to an ON digital signal. There are plenty of other circuits you can construct in your next PCB that can provide the functionality you might need.

In this way, we understand the concept of a non-linear device.

If you liked this article, then please subscribe to our YouTube Channel for Electrical, Electronics, Instrumentation, PLC, and SCADA video tutorials.

You can also follow us on Facebook and Twitter to receive daily updates.

Read Next:

  • Turbine Control System
  • Steps in PLC System Design
  • SCADA System Vulnerabilities
  • Delta PLC and VFD with Modbus
  • Characteristics of an Instrument
Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !
What is PCB Corrosion? Electronic Boards Corrosion Prevention
Factors Affecting Inductance
How to Identify the Transistor Terminals
What are Analog and Digital Signals? Differences, Examples
Clamp Meters Working Principle
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
Leave a Comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
208kSubscribersSubscribe
38kFollowersFollow

Categories

Recent Comments

  • Kamli on Top Free PLC Software
  • Guifty Shimica on Top Non-PLC Certification Courses for Automation Professionals
  • Guifty Shimica on Top Non-PLC Certification Courses for Automation Professionals
  • MIHARITSOA Aina Sitraka on Top Non-PLC Certification Courses for Automation Professionals

Related Articles

Measure Frequency using Multimeter

How to measure frequency using Multimeter

Accuracy, resolution, range, counts, digits and precision

Definition of Accuracy, Precision, Resolution, Range

Clamp Meter

Things to Know When Measuring Current

Measure Duty Cycle using Multimeter

How to Measure Duty Cycle using Multimeter

Testing a defective transistor

Testing a Transistor with a Digital Multimeter

Relay Parts

NO vs NC Contact

resistor-color-coding-example

IEC labelling for Resistors Color Code

Transistor as Switch Working Animation

How a Transistor Switch Works

More Articles

Power Systems Projects

400+ Power Systems Projects – Best Electrical Project Ideas

Flip Flop Circuits Objective Questions

Flip Flop Circuits Objective Questions

Difference Between Static and Temp Memory in Siemens TIA Portal

Difference Between Static and Temp Memory in Siemens PLC TIA Portal

Insulating Material for Cable Requirements

Insulating Material for Cable Requirements

Heat Flow Balance Systems Objective Questions

Heat Flow Balance Systems Objective Questions

Data Transmission Objective Questions

Data Transmission Objective Questions

wash column temperature control

Pneumatic Instrumentation

Selection of Weighing Balance

Selection of Weighing Balance and Weight for Calibration

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?