Inst ToolsInst ToolsInst Tools
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Search
  • Books
  • Software
  • Projects
  • Process
  • Tools
  • Basics
  • Formula
  • Power Plant
  • Root Cause Analysis
  • Electrical Basics
  • Animation
  • Standards
  • 4-20 mA Course
  • Siemens PLC Course
Reading: DC Motor Torque
Share
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Courses
  • Design
  • PLC
  • Interview
  • Control System
Search
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools > Blog > Electrical Theory > DC Motor Torque

DC Motor Torque

Last updated: July 28, 2018 3:15 pm
Editorial Staff
Electrical Theory
No Comments
Share
3 Min Read
SHARE

Torque is defined as that force which tends to produce and maintain rotation. The function of torque in a DC motor is to provide the mechanical output or drive the piece of equipment that the DC motor is attached to.

When a voltage is applied to a motor, current will flow through the field winding, establishing a magnetic field. Current will also flow through the armature winding, from the negative brush to the positive brush as shown in Figure 5.

Armature Current in a DC Motor

Figure 5 : Armature Current in a Basic DC Motor

Since the armature is a current carrying conductor in a magnetic field, the conductor has a force exerted on it, tending to move it at right angles to that field. Using the left-hand rule for current carrying conductors, you will see that the magnetic field on one side is strengthened at the bottom, while it is weakened on the other side.

Using the right-hand rule for motors, we can see that there is a force exerted on the armature which tends to turn the armature in the counter-clockwise direction. The sum of the forces, in pounds, multiplied by the radius of the armature, in feet, is equal to the torque developed by the motor in pound-feet.

It is evident from Figure 5 that if the armature current were reversed, but the field were the same, torque would be developed in the opposite direction. Likewise, if the field polarity were reversed and the armature remained the same, torque would also be developed in the opposite direction.

The force that is developed on a conductor of a motor armature is due to the combined action of the magnetic fields. The force developed is directly proportional to the strength of the main field flux and the strength of the field around the armature conductor. As we know, the field strength around each armature conductor depends on the amount of current flowing through the armature conductor. Therefore, the torque which is developed by the motor can be determined using Equation.

T = K Φ Ia

where

T  = torque, lb-ft
K  = a constant depending on physical size of motor
Φ = field flux, number of lines of force per pole
Ia = armature current

Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !

Continue Reading

Impedance
Induction Motor Torque Versus Slip
DC Motor Speed
Voltage and Current Phase Relationships in an Inductive Circuit
Thermocouples
Power Triangle
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
Leave a Comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
210kSubscribersSubscribe
38kFollowersFollow

Categories

Explore More

Transformer Voltage Ratio
Transformer Efficiency
Inductor
Three Phase Transformer Connections
Series and Parallel Inductors
Parallel Circuit Current Calculations
Calculate Power in Parallel RCL Circuit
Capacitance

Keep Learning

Three Phase To Single Phase Wiring Connections

Single Phase Power Wiring Schemes

Voltage Divider

Voltage Divider

Calculate Power in Parallel RL Circuit

Calculate Power in Parallel RL Circuit

Total Resistance in a Parallel Circuit

Resistance in Parallel Circuits

Induced EMF

Magnetic Circuits

Power Triangle

Apparent Power, True Power, Reactive Power & Total Power

Voltage Polarities

Voltage Polarity and Current Direction

Circuit Breaker Control Circuit Wiring

Circuit Breaker Control Circuit

Learn More

Power Electronics Objective Questions

Three Phase Bridge Inverters Objective Questions

Chemical Sensors Objective Questions

Chemical Sensors Objective Questions

Current to percentage conversion

Convert current (4-20mA) to Percentage (0-100%)

Electrical Machines Questions and Answers

Synchronous Machines Flux and MMF Phasors Questions

Ladder Logic Example with Timers

Ladder Logic Example with Timers

Quiz Program Logic Using PLC Programming

Quiz Program Logic Using PLC Programming

Selecting the Best Inductive or Capacitive Sensor

Selecting the Best Inductive or Capacitive Sensor

Sorting Defective Parts PLC Logic

Advanced PLC Programming for Defective Parts Sorting

Menu

  • About
  • Privacy Policy
  • Copyright

Quick Links

  • Learn PLC
  • Helping Hand
  • Part Time Job

YouTube Subscribe

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?