Inst ToolsInst ToolsInst Tools
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Search
  • Books
  • Software
  • Projects
  • Process
  • Tools
  • Basics
  • Formula
  • Power Plant
  • Root Cause Analysis
  • Electrical Basics
  • Animation
  • Standards
  • 4-20 mA Course
  • Siemens PLC Course
Reading: Thermocouples Sources of Error
Share
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Courses
  • Design
  • PLC
  • Interview
  • Control System
Search
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools > Blog > Temperature Measurement > Thermocouples Sources of Error

Thermocouples Sources of Error

Last updated: August 4, 2018 9:55 pm
Editorial Staff
Temperature Measurement
1 Comment
Share
3 Min Read
SHARE

Homogeneity (Wire Uniformity)

With thermocouples the main error lies not with stem conduction but with errors arising from inhomogeneity of the thermocouple wire. Therefore for reliable and consistent results the wires must be homogenous, i.e. the wire must have uniform properties, throughout.

The resultant output e.m.f. from a thermocouple is proportional to the temperature difference between the two junctions. The e.m.f. is generated not at the junction but in the part of the wire that passes through the temperature gradient between the measuring junction and the reference junction. As the e.m.f. is generated in the part of the wire in the temperature gradient then changing the immersion depth will change the position along the wire where the e.m.f. is generated. If the wire properties are different then errors occur.

There is nothing magical about the junction and it is a mistake to think that the e.m.f. is generated at the junction.

Thermocouples Calibration Errors

There is debate relating to the wisdom of calibrating thermocouples. Whilst the best method would be to calibrate thermocouples in situ, this is frequently not possible. As this is a practical guide to calibrating sensors, and thermocouples are calibrated in metal block baths, then the approach recommended here is to carefully consider the homogeneity.

It follows that the leads from the thermocouple should not be run through unnecessary temperature gradients and joins in the wire should be avoided when possible. When joins are made they should not be positioned in a temperature gradient.

Lead Resistance

This is generally less of a problem with thermocouples than p.r.t.’s, particularly with modern instrumentation. Manufacturers of thermocouple instruments may specify a maximum loop resistance, typically 100 ohms.

Thermal Lag

For thermocouples built into large sheaths or thermowells, this effect needs to be as considered for p.r.t.’s. For thermocouples constructed from fine wires the thermal lag tends not to be significant; indeed such a sensor may be selected for its fast response properties.

Thermal Capacity

As with Thermal Lag this may be an issue for larger assemblies but not for fine wire thermocouples.

Cold Junction Compensation (CJC) Errors

For simple instruments the CJC is built into the device, e.g. a field temperature transmitter. This will typically consist of a internal temperature-sensing device that measures the temperature of the junction of the thermocouple wire and the instrument and an uncertainty of +/- 1ºC, or more, may be expected.

Also Read : RTD Sources of Errors

Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !

Continue Reading

What is a Three-wire RTD ?
Important Factors for Thermocouple Selection
Thermocouple Calculations
RTD Calibration
Ambient Temperature Effects on RTD
Basic Temperature Sensors MCQ Questions Answers
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
1 Comment
  • T R Raja says:
    January 6, 2020 at 2:10 pm

    we are facing an error in temperature measurement we are taken take two comparing thermocouples and standard thermocouple on calibrating comparing thermocouple say A and B reads 1 to 2 Deg error on reaching 700 Deg the difference is coming around 8 Deg.C this happens tree times will you give solution/Reason for that

    type K type
    outer insulation fiber glass 1 time,
    bare wire with ceramic beads 2 nd time
    ceraamic fiber insulation 3 rd time.

    Reply

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
210kSubscribersSubscribe
38kFollowersFollow

Categories

Explore More

What is a Four-wire RTD ?
What is RTD Sensitivity ?
Spiral Bimetallic Thermometer Principle
Disadvantages of Resistance Temperature Detectors
Use of Temperature Transmitters instead of Direct Wiring
Distributed Temperature Sensors (DTS) in Power Lines
What is Temperature ?
Introduction to RTDs

Keep Learning

How to Install Thermowell on an Elbow?

thermocouple types

What is a Thermocouple ?

Temperature Controller Problem

Temperature Controller Problem

Electrical Resistance Temperature Curves of RTD

Resistance Temperature Detectors (RTD) Construction

RTD Calculator Software

RTD Calculator Software

Thermocouple Calibration

Thermocouple Calibration

RTD installed after the Orifice Plate

Why RTD installed after the Orifice Plate ?

field-mounted thermocouple

Thermocouple Extension Wires

Learn More

Analytical Instrumentation Engineering Projects

Top 100 Analytical Instrumentation Engineering Projects

Simatic Prosave HMI

How to Backup and Restore from Simatic Prosave HMI?

Turbine Meter Custody Transfer

What is Gas Meter and Regulating Station?

Snubber Circuits

Thyristor Protection Circuits (SCR) – Types, Principle, Explanation

Magnetic proximity sensors

Magnetic Proximity Detectors – Types, Principle, Advantages

Difference Between Microcontroller and PLC

Difference Between Microcontroller and PLC

Confined Space

9 Life-Saving Rules for Oil and Gas Industry

Single-Phase Induction Motors Multiple Choice Questions (MCQ)

125+ Single-Phase Induction Motors Multiple Choice Questions (MCQ)

Menu

  • About
  • Privacy Policy
  • Copyright

Quick Links

  • Learn PLC
  • Helping Hand
  • Part Time Job

YouTube Subscribe

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?