Inst ToolsInst ToolsInst Tools
  • Ask
  • Courses
  • Videos
  • Q & A
    • Interview
      • Instrumentation
      • Electronics
      • Electrical
      • Practical Questions
    • MCQ
      • Instrumentation MCQ
      • Electrical MCQ
      • Electronics MCQ
      • Control Systems MCQ
      • Analog Electronics MCQ
      • Digital Electronics MCQ
      • Power Electronics MCQ
      • Microprocessor MCQ
      • Multiple Choice Questions
  • EE
    • Electronics
      • Electronics Q & A
      • Electronic Basics
      • Electronic Devices & Circuits
      • Electronics Animation
      • Digital Electronics
    • Electrical
      • Electrical Basics
      • Electrical Q & A
      • Power Electronics
      • Electrical Machines
      • Electrical Animation
      • Power Systems
      • Switchgear & Protection
      • Transmission & Distribution
  • Measure
    • Control Valves
    • Calibration
    • Temperature
    • Pressure
    • Flow
    • Level
    • Analyzers
    • Switches
    • Vibration
    • Solenoid Valve
  • Control
    • PLC Tutorials
    • Control Systems
    • Safety Instrumented System (SIS)
    • Communication
    • Fire & Gas System
  • More
    • Design
    • Tools
    • Animation
    • Basics
    • Formulas
    • Standards
    • TextBooks
    • Common
    • Software
    • Excel Tools
    • Erection & Commissioning
    • Process Fundamentals
    • Videos
    • Books
Search
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Reading: Resonance, Resonant Frequency, Series and Parallel Resonance
Share
Notification Show More
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Courses
  • PLC Tutorials
  • Control Systems
Search
  • Ask
  • Courses
  • Videos
  • Q & A
    • Interview
    • MCQ
  • EE
    • Electronics
    • Electrical
  • Measure
    • Control Valves
    • Calibration
    • Temperature
    • Pressure
    • Flow
    • Level
    • Analyzers
    • Switches
    • Vibration
    • Solenoid Valve
  • Control
    • PLC Tutorials
    • Control Systems
    • Safety Instrumented System (SIS)
    • Communication
    • Fire & Gas System
  • More
    • Design
    • Tools
    • Animation
    • Basics
    • Formulas
    • Standards
    • TextBooks
    • Common
    • Software
    • Excel Tools
    • Erection & Commissioning
    • Process Fundamentals
    • Videos
    • Books
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools > Blog > Electrical Theory > Resonance, Resonant Frequency, Series and Parallel Resonance

Resonance, Resonant Frequency, Series and Parallel Resonance

Last updated: July 30, 2018 11:32 pm
Editorial Staff
Electrical Theory
No Comments
Share
3 Min Read
SHARE

In the posts on inductance and capacitance, we have learned that both conditions are reactive and can provide opposition to current flow, but for opposite reasons. Therefore, it is important to find the point where inductance and capacitance cancel one another to achieve efficient operation of AC circuits.

Contents
Resonant FrequencySeries ResonanceParallel Resonance

Resonant Frequency

Resonance occurs in an AC circuit when inductive reactance and capacitive reactance are equal to one another: XL = XC. When this occurs, the total reactance, X = XL – XC becomes zero and the impendence is totally resistive. Because inductive reactance and capacitive reactance are both dependent on frequency, it is possible to bring a circuit to resonance by adjusting the frequency of the applied voltage. Resonant frequency (fRes) is the frequency at which resonance occurs, or where XL = XC .

The below Equation is the mathematical representation for resonant frequency.

Resonant Frequency

where
fRes = resonant frequency (Hz)
L = inductance (H)
C = capacitance (f)

Series Resonance

Simple R-C-L Circuit

Figure 9 : Simple R-C-L Circuit

In a series R-C-L circuit, as in Figure 9, at resonance the net reactance of the circuit is zero, and the impedance is equal to the circuit resistance; therefore, the current output of a series resonant circuit is at a maximum value for that circuit and is determined by the value of the resistance. (Z=R)

Series Resonance in series RCL circuit

Parallel Resonance

Resonance in a parallel R-C-L circuit will occur when the reactive current in the inductive branches is equal to the reactive current in the capacitive branches (or when XL = XC ). Because inductive and capacitive reactance currents are equal and opposite in phase, they cancel one another at parallel resonance.

Parallel RLC Circuit

Figure 10 : Simple Parallel R-C-L Circuit

If a capacitor and an inductor, each with negligible resistance, are connected in parallel and the frequency is adjusted such that reactances are exactly equal, current will flow in the inductor and the capacitor, but the total current will be negligible.

The parallel C-L circuit will present an almost infinite impedance. The capacitor will alternately charge and discharge through the inductor. Thus, in a parallel R-C-L, as in Figure 10, the net current flow through the circuit is at minimum because of the high impendence presented by XL and XC in parallel.

Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !
AC Generator Nameplate Ratings
DC Machines Terminology
Series and Parallel Capacitors
Ohm Meter
Series-Wound DC Generators
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
Leave a Comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
208kSubscribersSubscribe
38kFollowersFollow

Categories

Recent Comments

  • Guifty Shimica on Top Non-PLC Certification Courses for Automation Professionals
  • Guifty Shimica on Top Non-PLC Certification Courses for Automation Professionals
  • MIHARITSOA Aina Sitraka on Top Non-PLC Certification Courses for Automation Professionals
  • Vaishnavi on Free Instrumentation Course for Trainee Engineers

Related Articles

Lead Acid Battery charge

Discharge and Charging of Lead-Acid Battery

DC Generator

DC Generator

Voltage Polarities

Voltage Polarity and Current Direction

Transformer voltage and turns ratio

Transformer Current Ratio

Resistor Y and Delta Network Calculation

Y and Delta Resistor Network Calculations

Voltage Drop in a Series Circuit

Series Resistance

Moving Iron Vane Meter Movement

Moving Iron Vane Meter Movement

Chemical Battery

Batteries

More Articles

Radiation Level Measurement Principle

Radiation Level Measurement

Proof Testing of Safety Instrumented Systems

Proof Testing of Safety Instrumented Systems

Pressure Transmitter Basics

Pressure Transmitter Applications

SCADA Graphics

What is SCADA ? How does SCADA Works ?

Ziegler-Nichols Open Loop Tuning Procedure

Ziegler-Nichols Open Loop Tuning Procedure

Instrumentation Basics - Range Conversion Formula and Examples

Instrumentation Basics – Range Conversion Formula and Examples

dead-weight-tester-principle

What is a Dead Weight Tester?

orifice-plate

Orifice Plate Turndown ratio

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?