Inst ToolsInst ToolsInst Tools
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Search
  • Books
  • Software
  • Projects
  • Process
  • Tools
  • Basics
  • Formula
  • Power Plant
  • Root Cause Analysis
  • Electrical Basics
  • Animation
  • Standards
  • 4-20 mA Course
  • Siemens PLC Course
Reading: PID Controller Loop Tuning Tips
Share
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Courses
  • Design
  • PLC
  • Interview
  • Control System
Search
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools > Blog > Control Systems > PID Controller Loop Tuning Tips

PID Controller Loop Tuning Tips

Last updated: June 17, 2019 11:13 pm
Editorial Staff
Control Systems
2 Comments
Share
7 Min Read
SHARE

PID CONTROLLER TUNING

If the controller is withdrawn from the control panel face, further adjustments are available which are used to tunethe controller to the process.

When a control loop is commissioned, the controller settings are adjusted to correspond to those, which have been specified during the design of the control system. If a large section of process is to be commissioned; possibly a mathematical model of the process will have been developed from which the optimum controller settings can be calculated for efficient and stable operation. It is these values which are set into the controller before start-up   and, if   calculated correctly, no further adjustment will be required.

 In some cases it will be necessary to tune a controller without having the benefit of knowing what the settings should be. It must always be remembered that the adjustments cover a very wide range of sensitivity and response. If adjusted haphazardly, the process may shut down and damage to equipment and lost production may occur.

The task of controller tuning is usually left to an instrument technician with experience in the cause and effect of process reaction and controller adjustments.

There are many trial and error methods of controller tuning which do not involve mathematical analysis and should be demonstrated by an experienced person, otherwise shutdowns may occur.

The first adjustment, which would normally be made, would be to set forward or reverse action as required.

A forward acting controller has increasing output in response to an increasing measured variable.

A reverse acting controller has decreasing output in response to an increasing measured variable.

Empirical Tuning Method

Proportional only controller :

  • With transfer switch at manual, set PB at maximum or at safe high value, usually 200% PB.
  • Move transfer switch to auto and make changes in set point. The time required for the disturbance to settle
    may then be noted.
  • Continue reducing band-width to half its previous value until the oscillation do not die away, But continue
    to be perceptible.
  • Now increase the band-width to twice its value. This gives the required stability, that is, the minimum
    stabilising time and minimum offset.

Proportional plus integral action

  • Set the Integral Action Time (IAT) to  maximum.- Adjust the proportional band as for a proportional controller.
  • Decrease the IAT in steps, each step being such that line IAT 1s halved at each adjustment.   Below some
    critical value, depending upon the lag characteristics of the process, hunting will occur. This hunting Indicates
    that the IAT has been reduced too far.
  • Now increase the time to approximately twice this value to restore the desired stability.

Proportional plus derivative action

  • Adjust the Derivative Action Time (DAT) to its minimum value.
  • Adjust the proportional band as described for proportional controller, but do not increase the band when hunting occurs.
  • Increase the DAT (that is, double each setting) so that; the hunting caused by the narrow band is eliminated.
  • Continue to narrow the band and again increase the DAT until the hunting is eliminated.
  • Repeat previous step until further increase of the derivative action time fails to eliminate the hunting introduced by the reduction of the proportional band, or tends to increase it.   This establishes the optimum value of the DAT and the hunting should be eliminated by increasing the width of the proportional band slightly.

Proportional plus integral plus derivative action

  • Set IAT to a maximum.
  • Set DAT to a minimum.
  • Adjust the proportional band as for a P + D controller.
  • Adjust derivative using same procedure as for above, P + D.-Adjust integral to a related value of the final derivative setting.

A three-term controller is therefore adjusted as for a P + D controller and the integral value simply related to thederivative value. In many cases, the setting procedure may be shortened by omitting settings, which are outside the probable range.

The process should then respond to set point or load changes, where integral action removes offset and the second overshoot of set point is approximately 1/4 the amplitude of the first.

This is commonly referred to asthe 1/4 decay method and is generally agreed to be the optimum controller setting for a P + I controller.

The above method is only used when no other controller setting data is available and must be practised with care.

Optimum Settings (Ultimate Method)

The closed loop or ultimate method involves finding the point where the system becomes unstable and using this as a basis to calculate the optimum settings.

The following steps may be used to determine ultimate PB and period:

  1. Switch the controller to automatic.
  2. Turn off all integral and derivative action.
  3. Set the proportional band to high value and reduce this value to the point where the system becomes unstableand oscillates with constant amplitude. Sometimes a small step change is required to force the system into itsunstable mode.
  4. The proportional band that required causing continuous oscillation is the ultimate value Bu.
  5. The ultimate periodic time is Pu.
  6. From these two values the optimum setting can be calculated.
  • For proportional action only
    PB% = 2 Bu %
  • Proportional + Integral
    PB% = 2.2 Bu%
    Integral action time = Pu / 1.2 minutes/repeat
  • Proportional + Integral + Derivative
    PB%=1.67Bu
    Integral action time = Pu / 2 minutes/repeatDerivative action = Pu / 8 minutes
Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !

Continue Reading

What are Static UPS and Rotary UPS?
How to Design a System Architecture in Industrial Automation?
Learn about PLC, DCS, RTU, SCADA, and PAC
Definitions of Electrical Grounding
Boiler Drum Level Control Systems
What is Multi-touch Technology? – Industrial Automation
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
2 Comments
  • subhas ganguly says:
    January 2, 2017 at 1:44 pm

    Dear bharatwaj sir can you help me to know how to calculate kvar calculation as per load?

    Reply
  • mustapha immam Peace says:
    January 4, 2017 at 2:51 pm

    please I need details of complete Automation….

    Reply

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
210kSubscribersSubscribe
38kFollowersFollow

Categories

Explore More

Loop Calibrator to Simulate a 4-20 mA Signal
Basics of Loop Powered Devices
Centrifugal Compressor Start Permissive and Interlocks
Troubleshooting a 4-20mA Current loop
Centralized vs Decentralized Automation Systems
Security of Industrial Automation Systems
Why Baud Rate is Important in Modbus Network?
PLC, DCS, and ESD Marshalling Cabinet Checks

Keep Learning

BACNet Protocol

What is the BACNet Protocol? BACNet IP vs. BACNet MS/TP

PID Controller Functions

PID Controller Functions

Relay Internal Parts

Relay Operation, Types, Symbols & Characteristics

Modbus Function code 02 – Read Contact(s)

Modbus Function Command Formats

Instrumentation During the Detail Design Phase

Instrumentation Engineer Activities & Documents – Detail Design Phase

Standard Colors in PLC Automation Systems

Standard Colors in PLC Automation Systems

Electrical and Instrument Engineers Job Profile

Instrumentation and Electrical Teams Interactions (Detail Design Engineering)

Does Really a Safety Barrier is Important

Does Really a Safety Barrier is Important? – PLC DCS Systems

Learn More

Control Systems Questions & Answers

Control Systems Objective Questions & Answers – Set 2

Instrumentation Lab Viva Questions

Instrumentation Lab Viva Questions

RSLogix5000 PLC Program Backup procedure

Fiber Optics Objective Questions and Answers

Fiber Optics Objective Questions and Answers

PLC SCADA Water Pump

PLC Program for Controlling a Water Pump with 3 Power Sources

compressor emergency shutdown system

Solenoid Valves Questions & Answers – 2

What is Temperature

What is Temperature ?

hall-effect-sensor

Hall Effect Sensor Working Principle Animation

Menu

  • About
  • Privacy Policy
  • Copyright

Quick Links

  • Learn PLC
  • Helping Hand
  • Part Time Job

YouTube Subscribe

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?