Inst ToolsInst ToolsInst Tools
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Search
  • Books
  • Software
  • Projects
  • Process
  • Tools
  • Basics
  • Formula
  • Power Plant
  • Root Cause Analysis
  • Electrical Basics
  • Animation
  • Standards
  • 4-20 mA Course
  • Siemens PLC Course
Reading: The inverse z-transform & Response of Linear Discrete Systems
Share
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Courses
  • Design
  • PLC
  • Interview
  • Control System
Search
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools > Blog > Multiple Choice Questions > The inverse z-transform & Response of Linear Discrete Systems

The inverse z-transform & Response of Linear Discrete Systems

Last updated: November 27, 2021 5:40 pm
Editorial Staff
Multiple Choice Questions
No Comments
Share
5 Min Read
SHARE

The inverse z-transform & Response of Linear Discrete Systems

1. Unit step response of the system described by the equation y(n) +y(n-1) =x(n) is:

a) z2/(z+1)(z-1)
b) z/(z+1)(z-1)
c) z+1/z-1
d) z(z-1)/z+1

Answer: a

Explanation: Response of the system is calculated by taking the z-transform of the equation and input to the transfer function in the step input.

2. Inverse z-transform of the system can be calculated using:

a) Partial fraction method
b) Long division method
c) Basic formula of the z-transform
d) All of the mentioned

Answer: d

Explanation: Inverse z-transform is the opposite method of converting the transfer function in Z domain to the discrete time domain and this can be calculated using all the above formulas.

3. Assertion (A): The system function
H(z) = z3-2z2+z/z2+1/4z+1/s is not causal
Reason (R): If the numerator of H (z) is of lower order than the denominator, the system may be causal.

a) Both A and R are true and R is correct explanation of A
b) Both A and R are true and R is not correct Explanation of A
c) A is True and R is false
d) A is False and R is true

Answer: a

Explanation: The transfer function is not causal as for causality the numerator of H (z) is of lower order than the denominator, the system may be causal.

4. Assertion (A): Z-transform is used to analyze discrete time systems and it is also called pulsed transfer function approach.
Reason(R): The sampled signal is assumed to be a train of impulses whose strengths, or areas, are equal to the continuous time signal at the sampling instants.

a) Both A and R are true and R is correct explanation of A
b) Both A and R are true and R is not correct Explanation of A
c) A is True and R is false
d) A is False and R is true

Answer: a

Explanation: Z-transform is used to convert the discrete time systems into the z domain and it is also called pulsed transfer function approach that is justified only at the sampling instants.

5. The z-transform corresponding to the Laplace transform G(s) =10/s(s+5) is

Answer: b

Explanation: Laplace transform is the technique of relating continuous time to the frequency domain while the z transform is relating discrete time hence Laplace transform is first converted into time domain and then the z transform is calculated.

6. Homogeneous solution of: y(n) -9/16y(n-2) = x(n-1)

a) C1(3/4)n+C2(3/4)-n
b) C1-(3/4)n-1+C2(3/4)n-1
c) C1(3/4)n
d) C1-(3/4)n

Answer: a

Explanation: Taking the z-transform of the given difference equation and solving the homogeneous equation and finding the solution using complimentary function.

7. If the z transform of x(n) is X(z) =z(8z-7)/4z2-7z+3, then the final value theorem is :

a) 1
b) 2
c) ∞
d) 0

Answer: a

Explanation: Final value theorem is calculated for the transfer function by equating the value of z as 1 and this can be calculated only for stable systems.

8. Final value theorem is used for:

a) All type of systems
b) Stable systems
c) Unstable systems
d) Marginally stable systems

Answer: b

Explanation: Final value theorem is used to calculate the final value as for time infinite and for z = 1 the final value theorem can be calculated and final value theorem is for for stable systems.

9. If the z-transform of the system is given by H (z) = a+z-1/1+az-1 . Where a is real valued:

a) A low pass filter
b) A high pass filter
c) An all pass filter
d) A bandpass filter

Answer: c

Explanation: The discrete time frequency response will be aperiodic and does not depend on the frequency and the transfer function will be representing the all pass filter.

10. The system is stable if the pole of the z-transform lies inside the unit circle

a) True
b) False

Answer: a

Explanation: For the system to be stable in Z domain the pole in the this domain must lie inside the unit circle and for the causal stable region must be outside the circle and hence the locus will be a ring.

Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !

Continue Reading

Tuning of PID Controllers
Temperature and Humidity Objective Questions
Liapunov’s Stability Criterion – Part II
Output Regulator & the Tracking Problem
Cascade Compensation in Frequency Domain
Special Designs of Ion Selective Electrodes Questions & Answers
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
Leave a Comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
210kSubscribersSubscribe
38kFollowersFollow

Categories

Explore More

Solution of State Equations
Time Response of Second Order Systems – II
Absorption Instrumentation Questions & Answers
Top 1000 Analytical Instrumentation Questions & Answers
Single Beam and Double Beam Instruments
Parameter Optimization
Chromatography Questions & Answers
X-Ray Absorption Meter Questions and Answers

Keep Learning

Time Response Analysis

Design Considerations for Higher Order Systems

Actuators Questions and Answers

Actuators Questions and Answers

Nonlinear Control Systems

Stability of Nonlinear System

Optimal Control Systems

Parameter Optimization : Servomechanims

Chromatography Questions & Answers

Operation of Chromatography Questions & Answers

Encoder Questions

Encoder Multiple Choice Questions

Analyzers Questions and Answers

Infrared Gas Analyzers Questions & Answers

Digital Control Systems

The Z-Transform

Learn More

ControlLogix Architecture - Rockwell Automation

ControlLogix Architecture – Rockwell Automation

cable-trays-glossary

Cable Trays Glossary

Closed Tank Level Measurement Formula

Siemens Differential Pressure Transmitter Calculations (Flange Type)

PLC Program for Blinking Lamp on 5 Seconds Interval

PLC Program for Blinking Lamp on 5 Seconds Interval

Instrumentation Engineer Interview Questions

Interview Questions on PID Controllers

Circuit Control Devices Multiple Choice Questions

Circuit Control Devices Multiple Choice Questions & Answers

LC Tuned circuit Working Animation

LC Tuned circuit Working Animation

Smart Sensors in Industry

Smart Sensors in Industry – Components, Types, Advantages

Menu

  • About
  • Privacy Policy
  • Copyright

Quick Links

  • Learn PLC
  • Helping Hand
  • Part Time Job

YouTube Subscribe

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?