Inst ToolsInst ToolsInst Tools
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Standards
    • Basics
    • Formula
    • Erection & Commissioning
    • Process Fundamentals
    • Root Cause Analysis
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
Search
  • Courses
  • PLC
  • Control Systems
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Reading: Time Response of Second Order Systems – II
Share
Notification Show More
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Courses
  • PLC
  • Control Systems
Search
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Standards
    • Basics
    • Formula
    • Erection & Commissioning
    • Process Fundamentals
    • Root Cause Analysis
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools > Blog > Multiple Choice Questions > Time Response of Second Order Systems – II

Time Response of Second Order Systems – II

Last updated: November 27, 2021 5:41 pm
Editorial Staff
Multiple Choice Questions
No Comments
Share
5 Min Read
SHARE

Time Response of Second Order Systems – II

1. What will be the nature of time response if the roots of the characteristic equation are located on the s-plane imaginary axis?

a) Oscillations
b) Damped oscillations
c) No oscillations
d) Under damped oscillations

Answer: c

Explanation: complex conjugate (non-multiple): oscillatory (sustained oscillations)
Complex conjugate (multiple): unstable (growing oscillations).

2. Consider a system with transfer function G(s) = s+6/Ks2+s+6. Its damping ratio will be 0.5 when the values of k is:

a) 2/6
b) 3
c) 1/6
d) 6

Answer: c

Explanation: s+6/K[s2+s/K+6/K] Comparing with s2+2Gw+w2
w= √6/K
2Gw=1/K
2*0.5*√6/K =1/K
K=1/6.

3. The output in response to a unit step input for a particular continuous control system is c(t)= 1-e-t. What is the delay time Td?

a) 0.36
b) 0.18
c) 0.693
d) 0.289

Answer: c

Explanation: The output is given as a function of time. The final value of the output is limn->∞c(t)=1; . Hence Td (at 50% of the final value) is the solution of 0.5=1-e-Td, and is equal to ln 2 or 0.693 sec.

4. Which one of the following is the most likely reason for large overshoot in a control system?

a) High gain in a system
b) Presence of dead time delay in a system
c) High positive correcting torque
d) High retarding torque

Answer: c

Explanation: Large overshoot refers to the maximum peak in the response of the closed loop system and this is mainly due to the high positive correcting torque.

5. For the system 2/s+1, the approximate time taken for a step response to reach 98% of its final value is:

a) 1s
b) 2s
c) 4s
d) 8s

Answer: c

Explanation: C(s)/R(s) = 2/s+1
R(s) = 1/s (step input)
C(s) = 2/s(s+1)
c(t) = 2[1-e-t] 1.96 = 2[1-e-T] T= 4sec.

6. The unit step response of a second order system is = 1-e-5t-5te-5t . Consider the following statements:
1. The under damped natural frequency is 5 rad/s.
2. The damping ratio is 1.
3. The impulse response is 25te-5t.
Which of the statements given above are correct?

a) Only 1 and 2
b) Only 2 and 3
c) Only 1 and 3
d) 1,2 and 3

Answer: d

Explanation: C(s) = 1/s-1/s+5-5/(s+5)^2
C(s) = 25/s(s2+10s+25)
R(s) = 1/s
G(s) = 25/(s2+10s+25 )
w= √25
w = 5 rad/sec
G = 1.

7. The loop transfer function of controller Gc(s) is :

a) 1+0.1s/s
b) -1+0.1s/s
c) –s/s+1
d) s/s+1

Answer: a

Explanation: The transfer function of the controller is 0.1s+1/s
Gc(s) = 0.1s+1/s.

8. The peak percentage overshoot of the closed loop system is :

a) 5.0%
b) 10.0%
c) 16.3%
d) 1.63%

Answer: c

Explanation: C(s)/R(s) = 1/s2+s+1
C(s)/R(s) = w/ws2+2Gws+w2
Compare both the equations,
w = 1 rad/sec
2Gw = 1
Mp = 16.3 %

9. Consider a second order all-pole transfer function model, if the desired settling time(5%) is 0.60 sec and the desired damping ratio 0.707, where should the poles be located in s-plane?

a) -5+j4√2
b) -5+j5
c) -4+j5√2
d) -4+j7

Answer: b

Explanation: G = 1/√2
Gw = 5
s = -5+j5.

10. Which of the following quantities give a measure of the transient characteristics of a control system, when subjected to unit step excitation.
1. Maximum overshoot
2. Maximum undershoot
3. Overall gain
4. Delay time
5. Rise time
6. Fall time

a) 1,3 and 5
b) 2, 4 and 5
c) 2,4 and 6
d) 1,4 and 5

Answer: d

Explanation: Maximum overshoot, rise time and delay time are the major factor of the transient behaviour of the system and determines the transient characteristics.

Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !

Continue Reading

Root Locus in Control Systems
Online Analyzers Questions & Answers
Effect of Adding a Zero to a System
Liquid Scintillation Counters Questions & Answers
Permit to Work System Online Test
Tuning of PID Controllers
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
Leave a Comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
208kSubscribersSubscribe
38kFollowersFollow

Categories

Explore More

Time Response of Second Order Systems – IV
Chromatography Questions & Answers
Polar Plots MCQ
State Variable Analysis – Part I
Controllability & Observability
Hydrocarbons Questions & Answers
Flame Emission Photometers Questions & Answers
Top 100 Power Plant Engineering Objective Questions & Answers

Keep Learning

Infrared Spectrometers Questions & Answers

Infrared Spectrometers Questions & Answers

Analyzers Questions and Answers

Amino-Acid Analyzers Questions & Answers

Mass Spectrometer Questions and Answers

Surface Spectroscopic Techniques

State Variable Analysis and Design

Pole Placement by State Feedback

Time Response Analysis

State Variable Analysis – Part II

Advances in Control System

Fuzzy Logic Control

number-systems-questions-answers

Measurement and Instrumentation Objective Questions – Part 4

Control Systems Stability and Algebraic Criteria

Relative Stability Analysis

Learn More

Vibrating Fork Level Switch Working Animation

Vibrating Fork Level Switch Working Animation

PLC Training Data Tables FIFO and LIFO

FIFO Instruction in Allen Bradley PLC Programming

What is a Current Transformer

What is a Current Transformer?

Certified Control Systems Technician (CCST) Sample Questions

Certified Control Systems Technician (CCST) Questions

What is NEST loading in DCS

What is Nest Loading? – DCS and PLC Control Systems

Relay Wiring

Animation of Electromagnetic Relay

Instruction List in PLC Programming

What is an Instruction List? – PLC Programming

Calibration & Preventative Maintenance Procedures

Calibration and Preventative Maintenance Procedures

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?