Inst ToolsInst ToolsInst Tools
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Search
  • Books
  • Software
  • Projects
  • Process
  • Tools
  • Basics
  • Formula
  • Power Plant
  • Root Cause Analysis
  • Electrical Basics
  • Animation
  • Standards
  • 4-20 mA Course
  • Siemens PLC Course
Reading: Time Response of Second Order Systems – II
Share
Notification Show More
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Courses
  • Design
  • PLC
  • Interview
  • Control System
Search
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools > Blog > Multiple Choice Questions > Time Response of Second Order Systems – II

Time Response of Second Order Systems – II

Last updated: November 27, 2021 5:41 pm
Editorial Staff
Multiple Choice Questions
No Comments
Share
5 Min Read
SHARE

Time Response of Second Order Systems – II

1. What will be the nature of time response if the roots of the characteristic equation are located on the s-plane imaginary axis?

a) Oscillations
b) Damped oscillations
c) No oscillations
d) Under damped oscillations

Answer: c

Explanation: complex conjugate (non-multiple): oscillatory (sustained oscillations)
Complex conjugate (multiple): unstable (growing oscillations).

2. Consider a system with transfer function G(s) = s+6/Ks2+s+6. Its damping ratio will be 0.5 when the values of k is:

a) 2/6
b) 3
c) 1/6
d) 6

Answer: c

Explanation: s+6/K[s2+s/K+6/K] Comparing with s2+2Gw+w2
w= √6/K
2Gw=1/K
2*0.5*√6/K =1/K
K=1/6.

3. The output in response to a unit step input for a particular continuous control system is c(t)= 1-e-t. What is the delay time Td?

a) 0.36
b) 0.18
c) 0.693
d) 0.289

Answer: c

Explanation: The output is given as a function of time. The final value of the output is limn->∞c(t)=1; . Hence Td (at 50% of the final value) is the solution of 0.5=1-e-Td, and is equal to ln 2 or 0.693 sec.

4. Which one of the following is the most likely reason for large overshoot in a control system?

a) High gain in a system
b) Presence of dead time delay in a system
c) High positive correcting torque
d) High retarding torque

Answer: c

Explanation: Large overshoot refers to the maximum peak in the response of the closed loop system and this is mainly due to the high positive correcting torque.

5. For the system 2/s+1, the approximate time taken for a step response to reach 98% of its final value is:

a) 1s
b) 2s
c) 4s
d) 8s

Answer: c

Explanation: C(s)/R(s) = 2/s+1
R(s) = 1/s (step input)
C(s) = 2/s(s+1)
c(t) = 2[1-e-t] 1.96 = 2[1-e-T] T= 4sec.

6. The unit step response of a second order system is = 1-e-5t-5te-5t . Consider the following statements:
1. The under damped natural frequency is 5 rad/s.
2. The damping ratio is 1.
3. The impulse response is 25te-5t.
Which of the statements given above are correct?

a) Only 1 and 2
b) Only 2 and 3
c) Only 1 and 3
d) 1,2 and 3

Answer: d

Explanation: C(s) = 1/s-1/s+5-5/(s+5)^2
C(s) = 25/s(s2+10s+25)
R(s) = 1/s
G(s) = 25/(s2+10s+25 )
w= √25
w = 5 rad/sec
G = 1.

7. The loop transfer function of controller Gc(s) is :

a) 1+0.1s/s
b) -1+0.1s/s
c) –s/s+1
d) s/s+1

Answer: a

Explanation: The transfer function of the controller is 0.1s+1/s
Gc(s) = 0.1s+1/s.

8. The peak percentage overshoot of the closed loop system is :

a) 5.0%
b) 10.0%
c) 16.3%
d) 1.63%

Answer: c

Explanation: C(s)/R(s) = 1/s2+s+1
C(s)/R(s) = w/ws2+2Gws+w2
Compare both the equations,
w = 1 rad/sec
2Gw = 1
Mp = 16.3 %

9. Consider a second order all-pole transfer function model, if the desired settling time(5%) is 0.60 sec and the desired damping ratio 0.707, where should the poles be located in s-plane?

a) -5+j4√2
b) -5+j5
c) -4+j5√2
d) -4+j7

Answer: b

Explanation: G = 1/√2
Gw = 5
s = -5+j5.

10. Which of the following quantities give a measure of the transient characteristics of a control system, when subjected to unit step excitation.
1. Maximum overshoot
2. Maximum undershoot
3. Overall gain
4. Delay time
5. Rise time
6. Fall time

a) 1,3 and 5
b) 2, 4 and 5
c) 2,4 and 6
d) 1,4 and 5

Answer: d

Explanation: Maximum overshoot, rise time and delay time are the major factor of the transient behaviour of the system and determines the transient characteristics.

Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !

Continue Reading

Liquid Chromatography Questions & Answers
High Pressure Liquid Chromatography Questions & Answers
Analytical Measurement Multiple Choice Questions
Linear Approximation of the Non-Linear System MCQ
Construction of Phase -Trajectories
Construction of Root Loci
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
Leave a Comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
210kSubscribersSubscribe
38kFollowersFollow

Categories

Explore More

Silica Analyzer Questions & Answers
MCQ on Measurement and Instrumentation
Temperature and Humidity Objective Questions
Root Locus Concepts Objective Questions
Solution of State Equations
Stability of Nonlinear System
Single Beam and Double Beam Instruments
Assessment of Relative Stability Using Nyquist Criterion

Keep Learning

Stability in Frequency Domain

Cascade Compensation in Frequency Domain

Digital Control Systems

Spectrum Analysis of Sampling Process

Digital Circuits Questions & Answers

Logic Families Questions and Answers

Ion Analyzers Questions and Answers

Ion Analyzer Questions & Answers

Nuclear Magnetic Resonance Spectrometer Questions and Answers

Fourier Transform NMR Spectroscopy Questions & Answers

Process Pressure Measurement Objective Questions

Process Pressure Measurement Objective Questions

State Variable Analysis and Design

Controllability & Observability

Mathematical Models of Physical Systems

Differential Equations of Physical Systems & Dynamics of Robotic Mechanisms

Learn More

Trends of PV and SP on a process chart

Inspecting the Trends of PV and SP on a Process Chart Recorder

Industrial Instrumentation Quiz

Industrial Instrumentation Quiz

Flow Switch Working

Flow Switch : What is it? – Applications

Specific-Conductance-Calibration-Procedure

Specific Conductance Calibration Procedure

Aluminum Cable Terminations

Aluminum Cable Terminations Repeat Failures

Power Electronics Objective Questions

Three Phase Converter Test Questions

Siemens PLC Force LED

Forcing and Modifying PLC Logic

Best Practices of PLC Wiring

Best Practices of PLC Wiring – Programmable Logic Controller

Menu

  • About
  • Privacy Policy
  • Copyright

Quick Links

  • Learn PLC
  • Helping Hand
  • Part Time Job

YouTube Subscribe

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?