Inst ToolsInst ToolsInst Tools
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Search
  • Books
  • Software
  • Projects
  • Process
  • Tools
  • Basics
  • Formula
  • Power Plant
  • Root Cause Analysis
  • Electrical Basics
  • Animation
  • Standards
  • 4-20 mA Course
  • Siemens PLC Course
Reading: Stability of Nonlinear System
Share
Notification Show More
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Courses
  • Design
  • PLC
  • Interview
  • Control System
Search
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools > Blog > Multiple Choice Questions > Stability of Nonlinear System

Stability of Nonlinear System

Last updated: November 27, 2021 5:40 pm
Editorial Staff
Multiple Choice Questions
No Comments
Share
4 Min Read
SHARE

Stability of Nonlinear System

1. Stability of a system implies that :

a) Small changes in the system input does not result in large change in system output
b) Small changes in the system parameters does not result in large change in system output
c) Small changes in the initial conditions does not result in large change in system output
d) Small changes in the initial conditions result in large change in system output

Answer: a

Explanation: Stability of the system implies that small changes in the system input, initial conditions, and system parameters does not result in large change in system output.

2. A linear time invariant system is stable if :

a) System in excited by the bounded input, the output is also bounded
b) In the absence of input output tends zero
c) Both a and b
d) None of the mentioned

Answer: c

Explanation: A system is stable only if it is BIBO stable and asymptotic stable.

3. Asymptotic stability is concerned with :

a) A system under influence of input
b) A system not under influence of input
c) A system under influence of output
d) A system not under influence of output

Answer: b

Explanation: Asymptotic stability concerns a free system relative to its transient behavior.

4. Bounded input and Bounded output stability notion concerns with :

a) A system under influence of input
b) A system not under influence of input
c) A system under influence of output
d) A system not under influence of output

Answer: a

Explanation: BIBO stability concerns with the system that has input present.

5. If a system is given unbounded input then the system is:

a) Stable
b) Unstable
c) Not defined
d) Linear

Answer: c

Explanation: If the system is given with the unbounded input then nothing can be clarified for the stability of the system.

6. Linear mathematical model applies to :

a) Linear systems
b) Stable systems
c) Unstable systems
d) All of the mentioned

Answer: b

Explanation: As the output exceeds certain magnitude then the linear mathematical model no longer applies.

7. For non-linear systems stability cannot be determined due to:

a) Possible existence of multiple equilibrium states
b) No correspondence between bounded input and bounded output stability and asymptotic stability
c) Output may be bounded for the particular bounded input but may not be bounded for the bounded inputs
d) All of the mentioned

Answer: d

Explanation: For non-linear systems stability cannot be determined as asymptotic stability and BIBO stability concepts cannot be applied, existence of multiple states and unbounded output for many bounded inputs.

8. If the impulse response in absolutely integrable then the system is :

a) Absolutely stable
b) Unstable
c) Linear
d) None of the mentioned

Answer: a

Explanation: The impulse response must be absolutely integrable for the system to absolutely stable.

9. The roots of the transfer function do not have any effect on the stability of the system.

a) True
b) False

Answer: b

Explanation: The roots of transfer function also determine the stability of system as they may be real, complex and may have multiplicity of various order.

10. Roots with higher multiplicity on the imaginary axis makes the system :

a) Absolutely stable
b) Unstable
c) Linear
d) None of the mentioned

Answer: b

Explanation: Repetitive roots on the imaginary axis makes the system unstable.

Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !

Continue Reading

Constructing Phase-Trajectories
pH Measurement Questions & Answers
MCQ on Measurement and Instrumentation
Magnetic Deflection Mass Spectrometer Questions & Answers
The Design Problem
Actuators Questions and Answers
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
Leave a Comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
210kSubscribersSubscribe
38kFollowersFollow

Categories

Explore More

Radiation Detectors Questions & Answers
Tuning of PID Controllers
Fuzzy Logic Control
NO2 Analyzer Questions & Answers
Feedforward Control Questions and Answers
Analytical Measurement Multiple Choice Questions
Temperature Measurement Multiple Choice Questions
Control Valves Multiple Choice Questions

Keep Learning

Industrial safety Objective Questions and Answers

Top 10 Industrial safety Objective Questions

Frequency Response MCQ

Experimentation of Transfer Function

Digital Control Systems

The Z-Transform

Feedback Characteristics of Control Systems

Feedback and Non-feedback Systems Objective Questions

Ion Analyzers Questions and Answers

Ion Analyzer Questions & Answers

Stability in Frequency Domain

Closed-Loop Frequency Response

Time Response Analysis

Design Considerations for Higher Order Systems

Liapunov’s Stability Analysis

Liapunov’s Stability Criterion – Part I

Learn More

Programmable Logic Controller (PLC) Questions and Answers

Programmable Logic Controller (PLC) Questions and Answers – 2

Valve Sequencing

Complementary Control Valve Sequence

Motor Cooling Methods

Motor Cooling Methods

Kiln

Kiln Inlet Gas Analyzer

Engineering Materials Objective Questions

Engineering Materials Objective Questions

Guided Wave Radar Questions and Answers

Guided Wave Radar Questions and Answers

Gas Detectors Interview Questions & Answers

Gas Detectors Interview Questions & Answers

Level Measurement Objective Questions

Level Measurement Objective Questions

Menu

  • About
  • Privacy Policy
  • Copyright

Quick Links

  • Learn PLC
  • Helping Hand
  • Part Time Job

YouTube Subscribe

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?