Inst ToolsInst ToolsInst Tools
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Search
  • Books
  • Software
  • Projects
  • Process
  • Tools
  • Basics
  • Formula
  • Power Plant
  • Root Cause Analysis
  • Electrical Basics
  • Animation
  • Standards
  • 4-20 mA Course
  • Siemens PLC Course
Reading: Gas Valve Sizing
Share
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Courses
  • Design
  • PLC
  • Interview
  • Control System
Search
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools > Blog > Control Valves > Gas Valve Sizing

Gas Valve Sizing

Last updated: October 17, 2023 4:02 pm
Editorial Staff
Control Valves
No Comments
Share
3 Min Read
SHARE

Sizing a control valve for gas or vapor service is more complicated than for liquid service, due to the compressibility of gases and vapors.

As a gas or vapor compresses with changes in pressure, its density changes correspondingly. In previous mathematical analyses of fluid flow restriction, one of our assumptions was that fluid density (ρ) remained constant.

This assumption may hold true for some flowing gas conditions as well, provided minimal pressure changes within the path of flow.

However, for most gas control valve applications where the very purpose of the valve is to introduce substantial pressure changes, the assumption of constant gas density is unrealistic.

Gas Valve Sizing

Gas Valve Sizing

Shown here is one of the simpler gas valve sizing equations you will encounter:

gas valve sizing equations

Where,

Q = Gas flow rate, in units of Standard Cubic Feet per Hour (SCFH)
Cv = Valve capacity coefficient
ΔP = Pressure dropped across valve, pounds per square inch differential (PSID)
P1 = Upstream valve pressure, pounds per square inch absolute (PSIA)
P2 = Downstream valve pressure, pounds per square inch absolute (PSIA)
Gg = Specific gravity of gas (ratio of gas density to standard air density)
T = Absolute temperature of gas in degrees Rankine (oR), equal to degrees Fahrenheit plus 459.67

This equation holds true only for “subcritical” flow, where the moving gas stream velocity never approaches the speed of sound (Note). Other equations exist for calculating flow rates of gas through control valves in the presence of sonic flow regimes.

Note the inclusion of absolute pressures in this equation, and not just differential pressure (ΔP, or P1 − P2). This is intended to correct for effects related to compression of the gas under pressure.

Note : The ISA Handbook of Control Valves cites this equation as being valid for conditions where the valve’s downstream pressure (P2) is equal to or greater than one-half the upstream pressure (P1), with both pressures expressed in absolute units. In other words, P2 ≥ 0.5P1 or P1 ≤ 2P2. An upstream:downstream pressure ratio in excess of 2:1 usually means flow through a valve will become choked.

Valve sizing is complicated enough, both for liquid and gas service, that the use of valve sizing computer software is strongly recommended as opposed to hand-calculations.

The number of important parameters, nonlinear factors, and alternative equations relevant to control valve sizing are numerous enough to bewilder most technicians (and more than a few engineers).

Valve sizing software will also predict noise levels generated by the valve, and in many cases specify actual valve trim styles offered by the manufacturer for mitigating problems such as noise.

Also Read : Basics of Control Valve Sizing

Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !

Continue Reading

Progressive Control Valve Sequence
Automated Block Valve (ABV)
How to Troubleshoot Control Valve? – Problems and Solutions
What is Travel Stop in Control Valve?
Difference between BDV and PSV
Air Cylinder Consumption Calculation for Control Valves
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
Leave a Comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
210kSubscribersSubscribe
38kFollowersFollow

Categories

Explore More

What is Reducing Valve ?
Effect of Differential Pressure on Control Valve Lift
What is Pump Cavitation? How to Avoid Cavitation?
Basics of Valves Interview Questions & Answers
Instrumentation Inspection Report
What are Isolation valves? – Purpose, Types, Configurations
Control Valve Positioner Working Principle
What is Pinch Valve ?

Keep Learning

Solenoid Valves Selection Guidelines

Solenoid Valves Selection Guidelines

What is Partial Stroke Test

What is Partial Stroke Test?

Cavitation Test Setup

Cavitation Test Setup

Valves Pressure Loss - Questions and Answers

Valves Pressure Loss – Questions and Answers

Digital Control Valve Working Principle

Digital Control Valve Working Principle

Ball Valve Parts

What is Ball Valve ?

Shut down valve

What is Shutdown Valve?

valve control system

Solenoid Valves Practical Problems

Learn More

Control Valve in PlantPAx Project

Configuration of Control Valve in Studio 5000

Totally Enclosed Fan Cooled (TEFC) Motor

Totally Enclosed Fan Cooled (TEFC) Motors Rampant Winding Burnouts

Career Opportunities in Instrumentation Engineering

Job and Career Opportunities in Instrumentation Engineering

Instrumentation Standards

Standard Temperature and Pressure Conditions

Allen-Bradley MicroLogix 1000 controller

PLC Switch Actuation Status

Electric Circuits Objective Questions

Electric Circuits Objective Questions – Set 11

Pressure Transmitters Purged impulse lines - 2

Pressure Transmitters Purged impulse lines

Chromatography Questions & Answers

Gas Chromatography Questions & Answers

Menu

  • About
  • Privacy Policy
  • Copyright

Quick Links

  • Learn PLC
  • Helping Hand
  • Part Time Job

YouTube Subscribe

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?