Inst ToolsInst ToolsInst Tools
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Search
  • Books
  • Software
  • Projects
  • Process
  • Tools
  • Basics
  • Formula
  • Power Plant
  • Root Cause Analysis
  • Electrical Basics
  • Animation
  • Standards
  • 4-20 mA Course
  • Siemens PLC Course
Reading: Facts About Control Valves
Share
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Courses
  • Design
  • PLC
  • Interview
  • Control System
Search
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools > Blog > Control Valves > Facts About Control Valves

Facts About Control Valves

Last updated: March 21, 2019 11:33 pm
Editorial Staff
Control Valves
1 Comment
Share
7 Min Read
SHARE

Study facts about control valves include pressure drop of control valves, capacity requirements of control valves, valve rangeability, characteristics of control valves, valve body design etc.

Contents
Facts About Control ValvesPressure Drop for Good ControlCapacity RequirementsRangeability (Turndown)Valve Characteristics Depending on FunctionFlow Characteristics of TypesBody Design (Characteristics of Types)Pressure-Temperature Rating, Valve Type and CVThrottling Differential Pressure, Erosion and StabilityValve Operating Temperature RangeInherent Flow CharacteristicsMaximum Leakage RateValve End Connections

Facts About Control Valves

Facts of Control Valves

Pressure Drop for Good Control

  • DP = 30 to 35% of total dynamic drop for equal percentage characteristic valves
  • DP = up to 50% for linear characteristics
  • but > 15% adequate for most applications
  • increase % DP for wide flow ranges
  • decrease % DP for small flow variations
  • best to optimize pumping costs with respect to valve type and DP valve

Capacity Requirements

  • Design flowrate (normal flow)
  • valve to control from 25 to 60% opening should be approxim. 65% of Cvrating to give control margin
  • Maximum flowrates
  • if not known then use 1.3-1.5 times design rate (generally 1.3)
  • Minimum flowrate
  • may be 3 to 4 % of rated capacity of valve
  • lower flowrates clash with leakage rates of valves especially double ported types

Rangeability (Turndown)

  • Assume rangeability of 15:1 to 20:1 for globe valves and 30:1 to 50:1 for ball valves

Valve Characteristics Depending on Function

  • Flow control
  • for wide flow range use linear characteristic
  • for small flow range (but high DPV) use equal percentage characteristic
  • Pressure control
  • for liquids use equal percentage
  • compressible fluids use equal percentage
  • if < 3m of downstream pipe
  • use linear characteristic if downstream system has a receiver or line > 30m length
  • if pressure drop > 5:1 use equal percentage
  • Liquid level control
  • for constant DP use linear characteristic
  • when DP decreases with load increase use linear characteristic
  • if “full load DP” < 20% of no-load DP use equal percentage
  • if DP increases with load increase use linear characteristic. If increase > 2:1 use quick opening type.

Flow Characteristics of Types

    • Equal percentage
    • for fast processes
    • for high rangeability
    • when system dynamics not well known
    • at heat exchanger where product rate change demands greater change in heating or cooling to be used:
    • when major portion of system DP is not available through the valve
    • valve DP is high at low flows, low at high flows
  • when oversizing is desirable due to limited data for past pressure control loops for most flow control loops
  • Quick opening for on-off control
  • when maximum valve capacity required quickly for directly connected valves such as pump governors, back pressure regulators and high capacity reducing regulators > 25 mm.
  • Linear for slow processes
  • when more than 40% of system DP occurs across valve
  • when major process changes are a result of load changes
  • when a variable head flowmeter is used
  • for most level control loops
  • for slow pressure control loops
  • loops where measurement is linear and DP across valve is small
  • 3-way valve systems
  • 2-way valves in 3-way service
  • Other characteristics for special applications are:
  • hyperbolic
  • square root

Also Read: Control Valves Terminology

Body Design (Characteristics of Types)

  • Sliding gate
  • reduced turbulence
  • fast response
  • self cleaning
  • tight shutoff
  • high rangeability (100:1)
  • linear characteristic
  • direct actuators available
  • fluid must be clean
  • Double port globe
  • high flow capacity compared to single port
  • high rangeability
  • requires smaller actuator than single port (balanced design)
  • reversible port
  • used for > 50.8 mm size
  • high leakage rates > 1%
  • low pressure recovery
  • erosion can occur
  • no good for high flow, low DP
  • Single port globe
  • high rangeability
  • good shut-of
  • reversible plugs
  • used for < 50.8 mm sizes
  • unbalanced design means larger actuator
  • low pressure recovery
  • 3-way globe
  • good for blending and diverting
  • often used for temperature control of heat exchangers
  • cannot control total flow
  • need to know flow conditions precisely
  • Split body
  • good control
  • tight shutoff
  • simple, economic construction
  • easy maintenance
  • free of pockets where sediments/solids collect
  • limited pressure drop due to top guiding
  • Venturi angle
  • good control
  • high capacity, good rangeability
  • tight shutoff
  • minimizes erosion
  • conserves space
  • can handle sludges and slurries
  • good for flashing
  • only available > 50.8 mm
  • Diaphragm
  • high capacity
  • low cost
  • self-cleaning
  • diaphragm protects working parts from fluid
  • tight shutoff if pressure is low
  • good for corrosive fluids
  • poor control characteristics
  • low rangeability
  • short diaphragm life
  • slow response
  • not for high DP applications
  • temperature limited by diaphragm material
  • Butterfly
  • high capacity
  • economical in large sizes
  • high recovery characteristic
  • good for slurry services
  • minimum space for installation
  • available in large sizes
  • operating torques are high
  • tight shutoff depends on resilient seals
  • throttling control limited
  • Vee-ball
  • high capacity
  • good control, rangeability
  • reasonable cost
  • good for slurry services
  • limited operating pressure
  • no good for high DP applications

Pressure-Temperature Rating, Valve Type and CV

  • Need to establish required Cv (65 to 75% rated CV), pressure and temperature rating eg. ANSI 150 class, 300 class etc.
  • check valve CV limitations to establish valve types available which meet CV requirements

Shut-off Differential Pressure, Valve Type and Size

  • establish maximum DP for valve, plus valve size
  • check valve types available which exceed DPmax and size specifications

Throttling Differential Pressure, Erosion and Stability

  • establish normal throttling DP, fluid properties (gas, liquid, abrasive, non-abrasive)
  • check valve type and internals to handle DP and fluid conditions

Valve Operating Temperature Range

  • establish maximum and minimum process temperature
  • check valve types suitable for temperature range (ball, globe and material – stainless steel, carbon steel, etc.)
  • typical ranges are:

Valve Operating Temperature Range

Inherent Flow Characteristics

  • establish flow characteristic required (linear, equal %, quick opening etc) and required rangeability
  • check valve type which provides suitable rangeability for given characteristic

Inherent Flow Characteristics

Maximum Leakage Rate

  • establish acceptable leakage rate at max. DP as % of valve capacity (% valve CV).
  • select valve to lie within following limits

Valve Selection Maximum Leakage Rate

Valve End Connections

Valve End Connections

Articles You May Like :

Classification of Control Valves

Types of Check Valves

Different Valve Types

Applications of Needle Valves

Valves Questions & Answers

Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !

Continue Reading

Two Solenoid Valves Working Principle
 Control Valve Accessories – Principle, Purpose, Advantages
How to Protect Pumps from Cavitation? – Reasons, Solutions
Control Valve Recommended Practices for Harsh Process Conditions
Direct-actuated Safety and Relief Valves
Exclusive Control Valve Sequence
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
1 Comment
  • azetou says:
    April 30, 2017 at 3:24 pm

    Very good article. plz could you provide reference for information(i.e: standards, best practices … etc) , especially for those listed in the tables? Thank you.

    Reply

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
210kSubscribersSubscribe
38kFollowersFollow

Categories

Explore More

Basics of Valves
Basics of Ball Valves
Basics of Control Valve Sizing
Working Principle of Pneumatic Actuators
Digital Control Valves – Introduction, Principle, Setup, Applications
Current to Pressure (I/P) Converter Principle
Self-actuated Temperature Regulator – Principle, Types, Advantages
Valve Materials Comparison Notes

Keep Learning

Gate Valve

How Gate Valves Work ?

single-acting-vs-double-acting-control-valve-actuators

Single Acting Vs Double Acting Actuators

Diaphragm Valves

How Diaphragm Valves Work ?

What is a Hydraulic Valve

What is a Hydraulic Valve? and their Types

Reduce Control Valve Noise

How to Reduce the Control Valve Noise?

Rotary Stem Valves

Rotary Stem Valves

Air Cylinder Consumption Calculation for Control Valves

Air Cylinder Consumption Calculation for Control Valves

control valve sizing problem

Importance of Proper Control Valve Sizing

Learn More

Electrical Heating Objective Questions and Answers

Electrical Heating Objective Questions and Answers

Analog Electronics Objective Questions

Analog Electronics Objective Questions – Set 8

Biomedical Instrumentation Questions and Answers

Biomedical Instrumentation Questions and Answers

Difference Between Adhesion and Cohesion

Difference Between Adhesion and Cohesion

Instrumentation Engineering Materials Test

Instrumentation Engineering Materials Test

Open Tank DP Level Measurement

Open Tank DP Level Transmitter Calculations

Frequency Response MCQ

Frequency Response MCQ

Determine the Problems with the Level Transmitter and Gauge

Determine the Problems with Level Transmitter and Gauge

Menu

  • About
  • Privacy Policy
  • Copyright

Quick Links

  • Learn PLC
  • Helping Hand
  • Part Time Job

YouTube Subscribe

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?