Inst ToolsInst ToolsInst Tools
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Search
  • Books
  • Software
  • Projects
  • Process
  • Tools
  • Basics
  • Formula
  • Power Plant
  • Root Cause Analysis
  • Electrical Basics
  • Animation
  • Standards
  • 4-20 mA Course
  • Siemens PLC Course
Reading: Conductivity Measurement
Share
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Courses
  • Design
  • PLC
  • Interview
  • Control System
Search
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools > Blog > Analyzers > Conductivity Measurement

Conductivity Measurement

Last updated: June 11, 2018 11:39 pm
Editorial Staff
Analyzers
No Comments
Share
3 Min Read
SHARE

The electrical conductivity of liquids is an important analytical measurement in many industrial processes. This measurement is one of the more non-specific types of analytical technologies, because it does not discriminate between different conductive substances dissolved in the solution. For this reason, conductivity measurement is found in process applications where the type of conductive substance is irrelevant (e.g. ultra-pure water treatment for semiconductor “chip” manufacturing, where any conductive substance dissolved in the water is undesirable), or where the substance of interest is known to be the only conductive substance present in significant quantity (e.g. controlling the salinity of a brine solution, where large quantities of salt are added to water).

Electrical conductivity in metals is the result of free electrons drifting within a “lattice” of atomic nuclei comprising the metal object. When a voltage is applied across two points of a metal object, these free electrons immediately drift toward the positive pole (anode) and away from the negative pole (cathode).

Electrical conductivity in liquids is another matter entirely. Here, the charge carriers are ions: electrically imbalanced atoms or molecules that are free to drift because they are not “locked” into a lattice structure as is the case with solid substances. The degree of electrical conductivity of any liquid is therefore dependent on the ion density of the solution (how many ions freely exist per unit volume of liquid). When a voltage is applied across two points of a liquid solution, negative ions will drift toward the positive pole (anode) and positive ions will drift toward the negative pole (cathode). In honor of this directional drifting, negative ions are sometimes called anions (attracted to the anode), while positive ions are sometimes called cations (attracted to the cathode).

Electrical conductivity in gases is much the same: ions are the charge carriers. However, with gases at room temperature, ionic activity is virtually nonexistent. A gas must be superheated into a plasma state before substantial ions exist which can support an electric current.

Types of Conductivity Probes 

  1. Electrodeless Conductivity Probes (Toroidal conductivity sensors )
  2. Two Electrode Conductivity Probes
  3. Four Electrode Conductivity Probes 
Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !

Continue Reading

Fluorescence
Four Electrode Conductivity Probes Principle
Falling Ball Viscometer Principle
How to Calibrate pH Electrode?
Questions and Answers on Gas
Silica Analyzer Problems and Troubleshooting Tips
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
Leave a Comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
210kSubscribersSubscribe
38kFollowersFollow

Categories

Explore More

TOC Analyzer Working Principle
Is it Easy to Measure Natural Gas Flow and Volume?
Kiln Inlet Gas Analyzer
Conductivity Analyzers Interview Questions & Answers
Dew Point Meter Principle
How to Calibrate Oxygen Analyzer? – O2 Sensor Testing Procedure
Sox Nox Analyzer
Basics of Chromatograph Operation

Keep Learning

Thermal Conductivity Detector (TCD)

Thermal Conductivity Detector (TCD) Principle

Various Types of Sensors Used in Water Treatment Plant

Various Types of Sensors used in Water Treatment Plant

Total Organic Carbon Analyzers Questions and Answers

Total Organic Carbon Analyzers Questions and Answers

Selection Criteria of PH Analyzer

Selection Criteria of pH Analyzers

mass spectrometer sample system

Mass Spectrometer Working Principle

Gas Filter Correlation (GFC) spectrometer

Gas Filter Correlation (GFC) Spectroscopy

Pulsed Fluorescence SO2-H2S-CS Analyzer Working Principle

Pulsed Fluorescence SO2, H2S, CS Analyzer Working Principle

GC sample loop

Chromatograph Sample Valves

Learn More

HIPPS Operating Philosophy

Understanding High Integrity Pressure Protection Systems (HIPPS)

diode-clamper-circuit

Full Wave Voltage Doubler using Diodes

Time Response Analysis

State Variable Analysis – Part II

Hazardous Area Classification Comparison

Comparison of IEC & NEC Area Classifications

Water Cut Meter

What is Water Cut Meter?

Digital Input and Output Devices Objective Questions

Digital Input Output Devices Objective Questions

Conductivity Meter for Medium Concentration

Measurement of Impurities in Water and Steam – Power Plant

Control Valve Plug Stem and Gland Leaks

Repeat Control Valve Plug Stem and Gland Leaks

Menu

  • About
  • Privacy Policy
  • Copyright

Quick Links

  • Learn PLC
  • Helping Hand
  • Part Time Job

YouTube Subscribe

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?