Inst ToolsInst ToolsInst Tools
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Search
  • Books
  • Software
  • Projects
  • Process
  • Tools
  • Basics
  • Formula
  • Power Plant
  • Root Cause Analysis
  • Electrical Basics
  • Animation
  • Standards
  • 4-20 mA Course
  • Siemens PLC Course
Reading: How Earth Resistance is Measured
Share
Notification Show More
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Courses
  • Design
  • PLC
  • Interview
  • Control System
Search
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools > Blog > Instrumentation Design > How Earth Resistance is Measured

How Earth Resistance is Measured

Last updated: March 16, 2019 8:23 am
Editorial Staff
Instrumentation Design
1 Comment
Share
3 Min Read
SHARE

The term “earth resistivity” expressed in ohm-centimeters (abbreviated ohm-cm) is one basic variable affecting resistance to earth of an electrode system. But the actual value of earth resistivity need not be measured to check the electrode earth resistance. Consider other fields where the value of resistivity is measured; also some of the factors affecting it that are of interest in earth testing.

Earth resistivity measurements can be used conveniently for geophysical prospecting — to locate ore bodies, clays, and water-bearing gravel beneath the earth’s surface. The measurement can also be used to determine depth to bed rock and thickness of glacial drift.

Measurements of earth resistivity are useful also for finding the best location and depth for low resistance electrodes. Such studies are made, for example, when a new electrical unit is being constructed; a generating station, substation, transmission tower, or telephone central office.

Finally, earth resistivity may be used to indicate the degree of corrosion to be expected in underground pipelines for water, oil, gas, gasoline, etc. In general, spots where the resistivity values are low tend to increase corrosion. This same kind of information is a good guide for installing cathodic protection.

How Earth Resistivity is Measured

A four-terminal instrument is used to measure earth resistivity. Now, however, you use four small-sized electrodes driven down to the same depth and equal distances apart in a straight line (Fig. 1). Four separate lead wires connect the electrodes to the four terminals on the instrument, as shown. Hence, the name of this test: the four-terminal method.

Earth Meter Working Principle

Fig 1 : Four-terminal method of measuring earth resistivity

Dr. Frank Wenner of the U.S. Bureau of Standards (now NIST) developed the theory behind this test in 1915. He showed that, if the electrode depth (B) is kept small compared to the distance between the electrodes (A)1, the following formula applies:

ρ = 2π AR

where ρ is the average soil resistivity to depth A in ohm-cm, π is the constant 3.1416, A is the distance between the electrodes in cm, and R is the Megger earth tester reading in ohms.

In other words, if the distance A between the electrodes is 4 ft, you obtain the average earth resistivity to a depth of 4 ft as follows:

1. Convert the 4 ft to centimeters to obtain A in the formula: 4 x 12 x 2.54 cm = 122 cm

2. Multiply 2 π A to obtain a constant for a given test setup: 2 x 3.14 x 122 = 766 Now, for example, if your instrument reading is 60 Ω, the earth resistivity would be 60 x 766, or 45,960 ohm-cm.

Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !

Continue Reading

Voting Concept in Package Safety System
Draw Wiring of a Pressure Switch to control two lamps
Basics of Permissive and Interlock Circuits
Motor Control Circuits
Instrumentation and Control (I&C) General Specifications
How to Select a Inductive Proximity Sensor
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
1 Comment
  • Mohammad Afroz says:
    December 22, 2016 at 5:32 am

    Dear sir,

    here its written A=20B, instead of 2B ?

    Reply

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
210kSubscribersSubscribe
38kFollowersFollow

Categories

Explore More

Level Instruments General Specifications
What is Marshalling Cabinet?
How to Select a Directional Valves
How O-Ring Failure caused NASA’s shuttle to Blast ?
Normally-Closed Contacts for Stop Buttons
Motor Control Signal Interface
Troubleshooting a Power Supply Circuit
Basic Principles of Electricity

Keep Learning

Barrier & Sensor Connection with NAMUR

Why we use NAMUR Output Sensor?

How to choose between PLC and DCS Systems

How to choose between PLC and DCS Systems ?

Instrumentation and Control (I&C) Design

Instrumentation and Control (I&C) Design

Instrument Protection Methods: Seals

Hammer Effect in Gauges

What is Hammer Effect in Gauges ?

What is WHCP?

Instrument Process Datasheet

Why is an Instrument Process Datasheet Required?

Industrial Process Plant Project Execution Cycle

Detail Design Engineering Competency Aspects

Learn More

Gas and Liquid Measurement

Gas and Liquid Measurement: Processes and Solutions for the Industrial Sector

Traffic Barrier Control

PLC Programming for Traffic Barrier Control

Finned Heater Leaks Sealed

Finned Tube Steam Leaks – Root Cause Analysis

Working Principle of Overload Relay

Working Principle of Overload Relay

IR Radio Sensors Objective Questions

IR Radio Sensors Objective Questions

Pressure Gauges with Zero Adjustment

Pressure Gauges Zero Adjustment

DeMorgan's Theorems

DeMorgan’s Theorems using Ladder Diagram

Auto-negotiation in Network

What is Auto-negotiation in Network?

Menu

  • About
  • Privacy Policy
  • Copyright

Quick Links

  • Learn PLC
  • Helping Hand
  • Part Time Job

YouTube Subscribe

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?