Inst ToolsInst ToolsInst Tools
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Search
  • Books
  • Software
  • Projects
  • Process
  • Tools
  • Basics
  • Formula
  • Power Plant
  • Root Cause Analysis
  • Electrical Basics
  • Animation
  • Standards
  • 4-20 mA Course
  • Siemens PLC Course
Reading: Battery Operation : Series and Parallel
Share
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Courses
  • Design
  • PLC
  • Interview
  • Control System
Search
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools > Blog > Electrical Theory > Battery Operation : Series and Parallel

Battery Operation : Series and Parallel

Last updated: July 27, 2018 4:40 pm
Editorial Staff
Electrical Theory
No Comments
Share
6 Min Read
SHARE

Once the basic theory behind the operation of batteries is understood, we can apply these concepts to better understand the way batteries are utilized.

Series Cells

When several cells are connected in series (Figure 7), the total voltage output of the battery is equal to the sum of the individual cell voltages. In the example of the battery in Figure 7, the four 1.5V cells provide a total of 6 volts.

When we connect cells in series, the positive terminal of one cell is connected to the negative terminal of the next cell. The current flow through a battery connected in series is the same as for one cell.

Batteries Connected in Series

Figure 7 : Cells Connected in Series

Parallel Cells

Cells connected in parallel (Figure 8), give the battery a greater current capacity. When cells are connected in parallel, all the positive terminals are connected together, and all the negative terminals are connected together. The total voltage output of a battery connected in parallel is the same as that of a single cell.

Cells connected in parallel have the same effect as increasing the size of the electrodes and electrolyte in a single cell. The advantage of connecting cells in parallel is that it will increase the current-carrying capability of the battery.

Batteries Connected in Parallel

Figure 8 : Cells Connected in Parallel

Primary Cell

Cells that cannot be returned to good condition, or recharged after their voltage output has dropped to a value that is not usable, are called primary cells. Dry cells that are used in flashlights and transistor radios (e.g., AA cells, C cells) are examples of primary cells.

Secondary Cells

Cells that can be recharged to nearly their original condition are called secondary cells. The most common example of a secondary, or rechargeable cell, is the lead-acid automobile battery.

Capacity

The capacity of a storage battery determines how long the storage battery will operate at a certain discharge rate and is rated in ampere-hours. For example, a 120 ampere-hour battery must be recharged after 12 hours if the discharge rate is 10 amps.

Internal Resistance

Internal resistance in a chemical cell is due mainly to the resistance of the electrolyte between electrodes (Figure 9).

Any current in the battery must flow through the internal resistance. The internal resistance is in series with the voltage of the battery, causing an internal voltage drop (Figure 10).

With no current flow, the voltage drop is zero; thus, the full battery voltage is developed across the output terminals (VB).  If a load is placed on the battery, load resistance (RL) is in series with internal resistance (Ri).

Internal Resistance in a Chemical Cell

Figure 9 : Internal Resistance in a Chemical Cell

Battery Internal Voltage Drop

Figure 10 : Internal Voltage Drop

When current flows in the circuit (IL ), the internal voltage drop (ILRi) drops the terminal voltage of the battery as shown in below Equation. Thus, internal resistance reduces both the current and voltage available to the load.

VL = VB – ILRi

Shelf Life

The shelf life of a battery is the time which a battery may be stored and not lose more than 10 percent of its original capacity.

Charge and Discharge

The charge of a battery may refer to as one of two things:

  1. the relative state of capacity of the battery, or
  2. the actual act of applying current flow in the reverse direction to return the battery to a fully-charged state.

Discharge, simply stated, is the act of drawing current from a battery.

Battery Operations Summary

  • The output voltage of a battery connected in series is equal to the sum of the cell voltages.
  • A battery that is connected in parallel has the advantage of a greater current carrying capability.
  • Secondary cells can be recharged; primary cells cannot be recharged.
  • The unit for battery capacity is the ampere-hour.
  • Internal resistance in a battery will decrease the battery voltage when a load is placed on the battery.
  • Shelf life is a term that is used to measure the time that a battery may sit idle and not lose more than 10 percent of its charge.
  • The charge of a battery may refer to one of two things: (1) the relative state of capacity of the battery, or (2) the actual act of applying current flow in the reverse direction to restore the battery to a fully-charged condition.
  • Discharge refers to the act of drawing current from a battery.
Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !

Continue Reading

Simplified Formulas for Parallel Circuit Resistance Calculations
Transformer Impedance Ratio
Single Phase Power Wiring Schemes
Magnetic Circuits
Transformer Current Ratio
Inductive Time Constant
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
Leave a Comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
210kSubscribersSubscribe
38kFollowersFollow

Categories

Explore More

Shunt-Wound Motor Operation
Parallel AC Generators
AC Induction Motor Slip
Circuit Breaker Control Circuit
Power Factor
Transformer Losses and Efficiency
Unbalanced 3 Phase Loads
Voltage and Current Phase Relationships in an Inductive Circuit

Keep Learning

Shorted Parallel Circuit

Parallel Short Circuit Faults

Units of Electrical Measurement

Units of Electrical Measurement

Voltage Divider

Voltage Divider

Center Tap Full-Wave Rectifier

Full-Wave Rectifier Circuit

Series Circuit

Series Circuit

DC Motor Action

DC Motor Speed

Parallel Circuit Parallel Current Calculations

Parallel Circuit Current Calculations

Air Circuit Breaker Principle

High Voltage Circuit Breaker Principle

Learn More

FMCW radar principle

TDR & FMCW Radar Level Transmitters Principle

Digital Image Processing Projects - DIP Project Ideas

600+ Digital Image Processing Projects – DIP Project Ideas

Heuristic PID Tuning Procedure

Heuristic PID Tuning Procedure

Solenoid Valve Design

Solenoid Valve Selection Criteria

Advantages & Disadvantages of Air Insulated Substation

Advantages & Disadvantages of Air Insulated Substation

Gas Turbine Temperature Control using Siemens Tia Portal

Gas Turbine Temperature Alarms using Siemens TIA Portal

Components of Electrical Motor

What is Electrical Slip Ring? Principle, Types, Advantages, Applications

Inductive Time Constant

Inductive Time Constant

Menu

  • About
  • Privacy Policy
  • Copyright

Quick Links

  • Learn PLC
  • Helping Hand
  • Part Time Job

YouTube Subscribe

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?