Inst ToolsInst ToolsInst Tools
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Search
  • Books
  • Software
  • Projects
  • Process
  • Tools
  • Basics
  • Formula
  • Power Plant
  • Root Cause Analysis
  • Electrical Basics
  • Animation
  • Standards
  • 4-20 mA Course
  • Siemens PLC Course
Reading: AC Generator Theory
Share
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Courses
  • Design
  • PLC
  • Interview
  • Control System
Search
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools > Blog > Electrical Theory > AC Generator Theory

AC Generator Theory

Last updated: August 3, 2018 2:33 pm
Editorial Staff
Electrical Theory
No Comments
Share
2 Min Read
SHARE

AC generators are widely used to produce AC voltage. To understand how these generators operate, the basic theory of operation must first be understood.

Theory of Operation

A simple AC generator consists of:

(a) a strong magnetic field,

(b) conductors that rotate through that magnetic field, and

(c) a means by which a continuous connection is provided to the conductors as they are rotating (Figure 3).

The strong magnetic field is produced by a current flow through the field coil of the rotor. The field coil in the rotor receives excitation through the use of slip rings and brushes. Two brushes are spring-held in contact with the slip rings to provide the continuous connection between the field coil and the external excitation circuit.

The armature is contained within the windings of the stator and is connected to the output. Each time the rotor makes one complete revolution, one complete cycle of AC is developed. A generator has many turns of wire wound into the slots of the rotor.

AC Generator Operation

Figure 3 : Simple AC Generator

The magnitude of AC voltage generated by an AC generator is dependent on the field strength and speed of the rotor. Most generators are operated at a constant speed; therefore, the generated voltage depends on field excitation, or strength.

The frequency of the generated voltage is dependent on the number of field poles and the speed at which the generator is operated, as indicated in below Equation.

AC Generator Frequency Equation - 1

where

f = frequency (Hz)
P = total number of poles
N = rotor speed (rpm)
120 = conversion from minutes to seconds and from poles to pole pairs

The 120 in above Equation is derived by multiplying the following conversion factors.

AC Generator Frequency Equation - 2

In this manner, the units of frequency (hertz or cycles/sec.) are derived.

Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !

Continue Reading

Classification of Transformers
Single Phase AC Induction Motors
Impedance in RLC Circuits
DC Motor Speed
Transformer Impedance Ratio
Calculate Power in Parallel RL Circuit
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
Leave a Comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
210kSubscribersSubscribe
38kFollowersFollow

Categories

Explore More

Thermocouples
Inductive Time Constant
Y and Delta Resistor Network Calculations
AC Induction Motor Slip
AC Generator Parts
Electrical Wiring Terminology
Resonance, Resonant Frequency, Series and Parallel Resonance
Half-Wave Rectifier Circuit

Keep Learning

Leading Power Factor

Power Factor

DC Motor Connections

DC Motor Connections

Current Law

Applying Kirchhoff’s Current Law

Generator Action in a Motor

Generator Action in a Motor

Block Diagram

Block Diagram

Marking Polarity

DC Circuit Analysis Loop Equations

Calculate Power in Parallel RCL Circuit

Calculate Power in Parallel RCL Circuit

Calculate Power in Parallel RC Circuit

Calculate Power in Parallel RC Circuit

Learn More

5 Valve manifold

5 Valve Manifold Operation

DeviceNet

What is DeviceNet?

General Streams in Electronics Engineering

General Streams in Electronics Engineering for Students

3-Wire, Three-Phase Delta Wiring System

3-Wire, Three-Phase Delta Wiring System

Analyzers Questions and Answers

Magnetic Wind Instruments Questions & Answers

Why Grounding

Generating Station Grounding Principles

Difference between Compact PLC and Modular PLC

Difference between Compact PLC and Modular PLC

ungrounded-or-isolated-neutral-system-disadvantages

Ungrounded or Isolated Neutral System Disadvantages

Menu

  • About
  • Privacy Policy
  • Copyright

Quick Links

  • Learn PLC
  • Helping Hand
  • Part Time Job

YouTube Subscribe

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?