Inst ToolsInst ToolsInst Tools
  • Ask
  • Courses
  • Videos
  • Q & A
    • Interview
      • Instrumentation
      • Electronics
      • Electrical
      • Practical Questions
    • MCQ
      • Instrumentation MCQ
      • Electrical MCQ
      • Electronics MCQ
      • Control Systems MCQ
      • Analog Electronics MCQ
      • Digital Electronics MCQ
      • Power Electronics MCQ
      • Microprocessor MCQ
      • Multiple Choice Questions
  • EE
    • Electronics
      • Electronics Q & A
      • Electronic Basics
      • Electronic Devices & Circuits
      • Electronics Animation
      • Digital Electronics
    • Electrical
      • Electrical Basics
      • Electrical Q & A
      • Power Electronics
      • Electrical Machines
      • Electrical Animation
      • Power Systems
      • Switchgear & Protection
      • Transmission & Distribution
  • Measure
    • Control Valves
    • Calibration
    • Temperature
    • Pressure
    • Flow
    • Level
    • Analyzers
    • Switches
    • Vibration
    • Solenoid Valve
  • Control
    • PLC Tutorials
    • Control Systems
    • Safety Instrumented System (SIS)
    • Communication
    • Fire & Gas System
  • More
    • Design
    • Tools
    • Animation
    • Basics
    • Formulas
    • Standards
    • TextBooks
    • Common
    • Software
    • Excel Tools
    • Erection & Commissioning
    • Process Fundamentals
    • Videos
    • Books
Search
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Reading: Difference Between Permittivity and Permeability
Share
Notification Show More
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Courses
  • PLC Tutorials
  • Control Systems
Search
  • Ask
  • Courses
  • Videos
  • Q & A
    • Interview
    • MCQ
  • EE
    • Electronics
    • Electrical
  • Measure
    • Control Valves
    • Calibration
    • Temperature
    • Pressure
    • Flow
    • Level
    • Analyzers
    • Switches
    • Vibration
    • Solenoid Valve
  • Control
    • PLC Tutorials
    • Control Systems
    • Safety Instrumented System (SIS)
    • Communication
    • Fire & Gas System
  • More
    • Design
    • Tools
    • Animation
    • Basics
    • Formulas
    • Standards
    • TextBooks
    • Common
    • Software
    • Excel Tools
    • Erection & Commissioning
    • Process Fundamentals
    • Videos
    • Books
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools > Blog > Electrical Basics > Difference Between Permittivity and Permeability

Difference Between Permittivity and Permeability

In this post, we will learn the difference between permittivity and permeability.

Last updated: November 16, 2022 11:24 am
Viral Nagda
Electrical Basics
No Comments
Share
6 Min Read
SHARE

In this post, we will learn the difference between permittivity and permeability.

Contents
What is Permittivity?What is Permeability?Difference Between Permittivity and Permeability

If you are studying magnetic fields and you do not know about permittivity and permeability, then you probably won’t be able to understand more theories deeply. They are very important terms in electromagnetism.

Because electromagnetism is used in almost every field, it is necessary to understand them.

Difference Between Permittivity and Permeability

What is Permittivity?

It is a property related to the media’s electric field (vacuum, air, gas). Suppose there is a media between two conductors. Every media has an atom (electrons and neutrons). They are in an unbalanced or uneven state (which means placed anywhere in the media) without any electrical interference.

When an electric field is applied to the conductors, the atoms polarise themselves in a proper direction and this movement by them creates their own electric field, which opposes the external electrical field applied to the conductors.

They start to move away from it. This opposition is known as permittivity. It measures the opposition offered against the formation of an electric field. If they are properly aligned and moving away from the electric field, then it means that the media is having better permittivity.

It is represented by the Greek alphabet ϵ. It is calculated by the following formula – electric displacement/intensity of the electric field. It can vary depending on the type of material used, the strength of the electric field, environmental specifications of temperature and humidity, etc. So, permittivity is majorly related to the electric field.

What is Permeability?

Let me explain this with a simple example. You have two materials – iron and wood. As you know, iron is conducting and wood is non-conducting. When you place a magnet near iron, it will attract to it and when you place it near wood, it would not.

A magnet has a magnetic field around it. When a material has the ability to allow the magnetic flux to pass through it and cause attraction towards the magnet, then it is called permeability. It is a measure of the material to allow the formation of magnetic lines within its range.

The point is not only about conducting and non-conducting. It can also happen that there are two conducting materials. One will have higher permeability and one will have lower. The higher one will attract quickly even from a longer distance to the magnet; which means it has the capability of forming stronger magnetic fields with the magnet.

Permeability is denoted by the Greek alphabet μ. It is calculated by the following formula – the magnitude of magnetic induction/intensity of the magnetic field. It can vary depending on the type of material used, the strength of the magnetic field, environmental specifications of temperature and humidity, etc. So, permeability is majorly related to the magnetic field.

Difference Between Permittivity and Permeability

The main differences between permeability and permittivity are as follows.

  1. As learned earlier, permeability is related to the magnetic field, whereas permittivity is related to the electric field. Permeability is the measure of application or allowance to the magnetic field, whereas permittivity is the measure of opposition to the electric field.
  2. Permittivity is represented by the Greek alphabet ϵ, whereas permeability is represented by the Greek alphabet μ.
  3. Permittivity is calculated by the following formula – electric displacement/intensity of electric field; whereas permeability is calculated by the following formula – the magnitude of magnetic induction/intensity of the magnetic field.
  4. The SI unit (international system of units) of permittivity is Farad/meter, whereas the SI unit of permeability is Henry/meter,
  5. Permittivity is used in capacitors; whereas permeability is used in inductors and transformer cores. Permittivity is a very important quantity in electromagnetism. Usually, the materials having higher values of permittivity are highly polarizable. The higher the permittivity of a medium, the more energy is stored in the medium. Permeability is a very important quantity, especially in material sciences and engineering. For example, it is important to choose a material with high magnetic permeability when designing transformer cores and inductors.

In this way, we understand the difference between permittivity and permeability.

If you liked this article, then please subscribe to our YouTube Channel for Electrical, Electronics, Instrumentation, PLC, and SCADA video tutorials.

You can also follow us on Facebook and Twitter to receive daily updates.

Read Next:

  • Background of Modbus
  • Instrumentation Cables
  • Plant Trip Due to Incorrect Tag
  • What is a Voltage Reference?
  • What is Gas Chromatography?
Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !
Top Electrical Engineering Questions & Answers
Understanding Braking Theory in VFD
Variable Frequency Drive (VFD) Working Principle
What is Power Cable? Types of Power Cables
Difference Between Core and Shell Transformers
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
Leave a Comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
208kSubscribersSubscribe
38kFollowersFollow

Categories

Recent Comments

  • Kamli on Top Free PLC Software
  • Guifty Shimica on Top Non-PLC Certification Courses for Automation Professionals
  • Guifty Shimica on Top Non-PLC Certification Courses for Automation Professionals
  • MIHARITSOA Aina Sitraka on Top Non-PLC Certification Courses for Automation Professionals

Related Articles

Lithium-ion Battery Charging System

Lithium-ion Battery Charging Systems

Difference between MCB and RCBO

Difference Between MCB and RCBO

Top 10 Common Mistakes on Electrical Systems

Top 10 Common Mistakes on Electrical Systems

Difference Between HV and LV Cables

Difference Between HV and LV Cables

Switched Mode Power Supply (SMPS)

How does SMPS Works? – Switched Mode Power Supply

Industrial Star Delta Starter for 3-Phase Induction Motor

Star Delta Starter – Working, Circuit, Advantages, Disadvantages

Totally Enclosed Fan Cooled (TEFC) Motor

Totally Enclosed Fan Cooled (TEFC) Motors Rampant Winding Burnouts

Difference between UPS and Stabilizer

Difference between UPS and Stabilizer?

More Articles

Power Systems Questions & Answers

Power Systems MCQ Series 7

Voltage Variations Effects on Power Plant Equipment

Voltage Variations Effects on Power Plant Equipment

Why Calibration is Important

Why Calibration is Important?

Cable Drum Handling

What is Cable Drum Handling? – Transportation & Storage

Control Systems Questions & Answers

Control Systems Objective Questions & Answers – Set 1

Power Electronics Objective Questions

AC Voltage Controllers Objective Questions

thermocouple head

Thermocouples Connector and Tip styles

Real-time PLC Projects

Real-time PLC Projects – Industrial Automation

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?