Inst ToolsInst ToolsInst Tools
  • Ask
  • Courses
  • Videos
  • Q & A
    • Interview
      • Instrumentation
      • Electronics
      • Electrical
      • Practical Questions
    • MCQ
      • Instrumentation MCQ
      • Electrical MCQ
      • Electronics MCQ
      • Control Systems MCQ
      • Analog Electronics MCQ
      • Digital Electronics MCQ
      • Power Electronics MCQ
      • Microprocessor MCQ
      • Multiple Choice Questions
  • EE
    • Electronics
      • Electronics Q & A
      • Electronic Basics
      • Electronic Devices & Circuits
      • Electronics Animation
      • Digital Electronics
    • Electrical
      • Electrical Basics
      • Electrical Q & A
      • Power Electronics
      • Electrical Machines
      • Electrical Animation
      • Power Systems
      • Switchgear & Protection
      • Transmission & Distribution
  • Measure
    • Control Valves
    • Calibration
    • Temperature
    • Pressure
    • Flow
    • Level
    • Analyzers
    • Switches
    • Vibration
    • Solenoid Valve
  • Control
    • PLC Tutorials
    • Control Systems
    • Safety Instrumented System (SIS)
    • Communication
    • Fire & Gas System
  • More
    • Design
    • Tools
    • Animation
    • Basics
    • Formulas
    • Standards
    • TextBooks
    • Common
    • Software
    • Excel Tools
    • Erection & Commissioning
    • Process Fundamentals
    • Videos
    • Books
Search
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Reading: Thermocouple and its Principle
Share
Notification Show More
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Courses
  • PLC Tutorials
  • Control Systems
Search
  • Ask
  • Courses
  • Videos
  • Q & A
    • Interview
    • MCQ
  • EE
    • Electronics
    • Electrical
  • Measure
    • Control Valves
    • Calibration
    • Temperature
    • Pressure
    • Flow
    • Level
    • Analyzers
    • Switches
    • Vibration
    • Solenoid Valve
  • Control
    • PLC Tutorials
    • Control Systems
    • Safety Instrumented System (SIS)
    • Communication
    • Fire & Gas System
  • More
    • Design
    • Tools
    • Animation
    • Basics
    • Formulas
    • Standards
    • TextBooks
    • Common
    • Software
    • Excel Tools
    • Erection & Commissioning
    • Process Fundamentals
    • Videos
    • Books
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools > Blog > Temperature Measurement > Thermocouple and its Principle

Thermocouple and its Principle

Last updated: August 4, 2016 5:18 am
Editorial Staff
Temperature Measurement
3 Comments
Share
5 Min Read
SHARE

A thermocouple consists of two pieces of dissimilar metals with their ends joined together (by twisting, soldering or welding). When heat is applied to the junction, a voltage, in the range of milli-volts (mV), is generated. A thermocouple is therefore said to be self-powered. Shown in Below Figure is a completed thermocouple circuit.

Thermovcouple Circuit

The voltage generated at each junction depends on junction temperature. If temperature T1 is higher than T2, then the voltage generated at Junction 1 will be higher than that at Junction 2. In the above circuit, the loop current shown on the galvanometer depends on the relative magnitude of the voltages at the two junctions.

In order to use a thermocouple to measure process temperature, one end of the thermocouple has to be kept in contact with the process while the other end has to be kept at a constant temperature. The end that is in contact with the process is called the hot or measurement junction. The one that is kept at constant temperature is called cold or reference junction. The relationship between total circuit voltage (emf) and the emf at the junctions is:

Circuit emf = Measurement emf – Reference emf

If circuit emf and reference emf are known, measurement emf can be calculated and the relative temperature determined.

To convert the emf generated by a thermocouple to the standard 4-20 mA signal, a transmitter is needed. This kind of transmitter is called a temperature transmitter. Below Figure shows a simplified temperature transmitter connection.

Thermocouple Junctions

In Figure above, the temperature measurement circuit consists of a thermocouple connected directly to the temperature transmitter. The hot and
cold junctions can be located wherever required to measure the temperature difference between the two junctions.

In most situations, we need monitor the temperature rise of equipment to ensure the safe operation. Temperature rise of a device is the operating temperature using ambient or room temperature as a reference. To accomplish this the hot junction is located in or on the device and the cold junction at the meter or transmitter as illustrated in Below figure.

Thermocouple Measurement Junction

Thermocouple Advantages and Disadvantages

Advantages:

  • Thermocouples are used on most transformers. The hot junction is inside the transformer oil and the cold junction at the meter mounted on the outside. With this simple and rugged installation, the meter directly reads the temperature rise of oil above the ambient temperature of the location.
  • In general, thermocouples are used exclusively around the turbine hall because of their rugged construction and low cost.
  • A thermocouple is capable of measuring a wider temperature range than an RTD.

Disadvantages:

  • If the thermocouple is located some distance away from the measuring device, expensive extension grade thermocouple wires or compensating cables have to be used.
  • Thermocouples are not used in areas where high radiation fields are present (for example, in the reactor vault). Radioactive radiation (e.g., Beta radiation from neutron activation), will induce a voltage in the thermocouple wires. Since the signal from thermocouple is also a voltage, the induced voltage will cause an error in the temperature transmitter output.
  • Thermocouples are slower in response than RTDs
  • If the control logic is remotely located and temperature transmitters (milli-volt to milli- amp transducers) are used, a power supply failure will of course cause faulty readings.

Failure Modes:

  • An open circuit in the thermocouple detector means that there is no path for current flow, thus it will cause a low (off-scale) temperature reading.
  • A short circuit in the thermocouple detector will also cause a low temperature reading because it creates a leakage current path to the ground and a smaller measured voltage.

Thermal Wells / Thermo wells

The process environment where temperature monitoring is required, is often not only hot, but also pressurized and possibly chemically corrosive or radioactive. To facilitate removal of the temperature sensors (RTD and TC), for examination or replacement and to provide mechanical protection, the sensors are usually mounted inside thermal wells (Below Figure).

Thermowells

A thermal well is basically a hollow metal tube with one end sealed. It is usually mounted permanently in the pipe work. The sensor is inserted into it and makes contact with the sealed end.

A drawback to thermal wells is their long response time because heat must be transferred through the well to the sensor. An example of the temperature response for bare and thermal well installed sensors is shown in Below Figure. Minimizing the air space between the sensor and the well, however, can decrease this thermal lag.

Thermowell Response Curve

Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !
Stability and Uniformity of Temperature Bath
Problems of Reference Junction Compensation : Thermocouples
Thermocouple Construction
Formula of 2 Wire RTD, 3 Wire RTD & 4 Wire RTD
RTD Calculator : Calculate Resistance from Temperature
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
3 Comments
  • priyanka bannerji says:
    September 28, 2016 at 9:38 am

    how is wake frequency calculated?

    Reply
  • anu says:
    October 5, 2016 at 4:42 am

    Sir, main stream temperature in field 530, junction box 530,dcs will checked 532.after connected in dcs temperature card in cable (1,2)the dcs reading show in less then 100

    Reply
    • S Bharadwaj Reddy says:
      October 7, 2016 at 4:20 am

      Hi, How you checked at Field, Junction Box & DCS ? For thermocouple > Check millivolt signals at all points and must be same. If found same value then check your DCS Card or its configuration. For testing > Connect this thermocouple in spare channel > configure with same config > Check reading. Also Check for any cable induction voltage..

      Reply

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
208kSubscribersSubscribe
38kFollowersFollow

Categories

Recent Comments

  • Kamli on Top Free PLC Software
  • Guifty Shimica on Top Non-PLC Certification Courses for Automation Professionals
  • Guifty Shimica on Top Non-PLC Certification Courses for Automation Professionals
  • MIHARITSOA Aina Sitraka on Top Non-PLC Certification Courses for Automation Professionals

Related Articles

4-wire RTD Bridge Circuit

Why we use Wheatstone bridge in RTD?

Temperature Sensors Questions

Questions on Thermocouple and Pyrometer

RTD-standards

How to calculate the tolerance of a RTD sensor

Resistance Temperature Detectors Troubleshooting Tips

Resistance Temperature Detectors Troubleshooting Tips

thermal imaging instrument

Thermal Imaging Temperature Measurement

General Specification of Thermowell

General Specification of Thermowell

Basic components of a Thermowell

What is Thermowell and How-to choose Thermowell Probe Length ?

Probe Thermometer

What is a Probe Thermometer? How to Calibrate and Use it?

More Articles

Difference between Accuracy, Tolerance, Uncertainty, and Error

Difference between Accuracy, Tolerance, Uncertainty, and Error

Shift Bit Register in PLC

Shift Bit Register in PLC

Piezo-electric Acceleration Measuring Device

Piezo-electric Acceleration Measuring Device

Traffic Lights Ladder Diagram using Timers

Traffic Lights Ladder Diagram using Timers

Flow Measurement Questions

MCQ on Flow Measurement

Wet Contacts and Dry Contacts in PLC Systems

Wet Contacts and Dry Contacts in PLC Systems

Vortex Flow GIF

Working Principle of Vortex Flow Meter

Error sources creating Uncertainty in calibration

Error sources creating uncertainty in Calibration

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?