Inst ToolsInst ToolsInst Tools
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Search
  • Books
  • Software
  • Projects
  • Process
  • Tools
  • Basics
  • Formula
  • Power Plant
  • Root Cause Analysis
  • Electrical Basics
  • Animation
  • Standards
  • 4-20 mA Course
  • Siemens PLC Course
Reading: Short Notes on Rectifiers & Filters
Share
Notification Show More
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Courses
  • Design
  • PLC
  • Interview
  • Control System
Search
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools > Blog > Electronic Devices & Circuits > Short Notes on Rectifiers & Filters

Short Notes on Rectifiers & Filters

Last updated: September 28, 2016 11:49 am
Editorial Staff
Electronic Devices & Circuits
No Comments
Share
6 Min Read
SHARE

The device which operates at above 30V is called an electrical device and the device which operates with less than 30V is called electronic voltage. Even though the electronic devices like transistors are used to amplify the analog signals, they eventually need DC voltage biasing to perform that task. Likewise so many electronic devices operate on only DC which cannot sustain any voltage changes. The DC sources like batteries can be used to power these electronic devices but the batteries will be drained with the time which provides interruption.

In our electricity generation all the generated energy is alternating in nature, so this alternating energy should be converted in to direct energy to provide DC supply to the electronic components. This is an online process where the generated AC is converted into proper regulated DC. It is so important to learn the two devices called rectifiers and filters which are used to convert AC to DC.

Rectifiers

The device which converts alternating (bidirectional) voltage to pulsating (Unidirectional) voltage is called rectifier. As the name specifies it rectifies some portion of the alternating signal and provides a unidirectional signal at the output. This is achieved by the electronic element called semiconductor diode. The semiconductor diode is the element which allows the signal in one direction and blocks the signal in reverse direction i.e. converting bidirectional into unidirectional.

Half Wave Rectifier 

However a simple diode can acts as rectifier which also can be called as Half wave rectifier. But the half wave rectifier can convert half of the input signal to pulsating DC and the remaining half will be lost as heat. So the efficiency is less.

Full wave Rectifier

To increase the efficiency two diodes are placed to convert each AC cycle into pulsating DC cycle. I.e. two unidirectional pulsed for one AC cycle will be produced at the output. The full wave rectifiers are divided as Center-taped full wave rectifier and Bridge Full wave rectifier.

Center Taped full wave rectifier

In this the center taped transformer is used to perfectly divide the AC signal in to half cycles and to give as an input to the two diodes which produces the pulsating DC.

Bridge Rectifier

Four rectifier diodes arranged in the form of bridge in which two diodes conducts per one half AC cycle and provides the pulsating DC output with two pulses per cycle. Here the need of the transformer is eliminated.

However the rectifier output is unidirectional pulsating current which has variation in magnitude. This variation in magnitude should be eliminated before giving to any electronic component. So to eliminate this, the devices called filters are introduced.

Filters

The devices which converts the pulsating DC in to pure DC is called filter. As the name specifies it filters the oscillations in the signal and provides a pure DC at the output. The electronic reactive elements like capacitor and inductors are used to do this work.

Inductive Filter (L)

The property of the inductor is that it opposes any sudden change that occurs in a circuit an provides a smoothed output. In the case of AC, there is change in the magnitude of current with time. So the inductor offers some impendence (opposing force) for AC ((XL = jwL) and offers shot circuit for DC. So by connecting inductor in series with the supply blocks AC and allows DC to pass.

Capacitor Filter

The elegant quality of the capacitor is it stores the electrical energy for short time and discharges it. By controlling the charging and discharging rate of the capacitor the pure DC can be obtained from the pulsating DC. In simple the capacitor allows AC and blocks DC, so the capacitor can connect parallel to the power supply so that the AC is filtered out and DC will reach the load.

LC Filter

In the above two filters the reactive components are singly connected, however no element will be perfect in doing the job i.e. inductor in series may pass small quantity of AC and Capacitor in parallel may not block all the AC component. So for better filtering two components are connected as filter which provides less ripple factor at the output compared to the above filter.

 CLC or π filter

In L and LC filter the inductor connected in series to the power supply drops more AC voltage which reduces the efficiency. So to avoid this increase the efficiency a capacitor is connected at the input of the LC filter. The input capacitor charges & discharges and provides a ripple DC at the input of inductor. Then the drop at the inductor is less and provides a ripple less DC which again filtered by capacitor at the output.

Multiple connection the above filter provides better efficiency and less ripple factor at the output.

Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !

Continue Reading

Transistor Emitter Bias
Semiconductors Diodes Questions & Answers
Insulators, Conductors and Semiconductors
Photodiode as Variable Resistance Device
Optoisolator Working Principle
Voltage Divider Rule
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
Leave a Comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
210kSubscribersSubscribe
38kFollowersFollow

Categories

Explore More

Why Silicon is preferred over Germanium ?
Series and Parallel Resistors
How to Test a Diode using Multimeter
Classification of Bridge Circuits
Basics of Ohm’s Law
Power MOSFET Safe Operating Area
Methods of Transistor Biasing
Electron Gun of Cathode Ray Tube

Keep Learning

half-wave-voltage-doubler-using-diodes

Half Wave Voltage Doubler using Diodes

Comparison of CB, CE & CC Amplifiers

Comparison of Transistor Configurations

Choke Input Filter Operation

Choke Input Filter Operation

capacitor-filter-ripples

Ripple Voltage in Rectifiers

Applications of Photo diodes

Applications of Photo diodes

Comparison of Half wave Rectifiers and Full wave Rectifiers

Comparison of Half wave Rectifiers and Full wave Rectifiers

Transistor Collector Feedback Bias

Transistor Collector Feedback Bias

Fluorescent Screen of CRT

CRT Fluorescent Screen

Learn More

Voltage Control Methods at Distribution System

Voltage Control Methods at Distribution System

Difference between Single-phase and three-phase power supply

Difference between Single-phase and Three-phase Power

100 Electronics and Electrical Projects for Engineering Students

100 Electronics and Electrical Projects for Engineering Students

Instrumentation Air System Design

Instrumentation Air System Design

Magnetic Level Indicator

Magnetic Level Indicator Principle, Limitations, Installation and Calibration

Identify Valve Parts Quiz with Answers

Identify Valve Parts Quiz with Answers

Properties of Conducting Materials

Resistivity

Process vessel for measuring water level

Level Measurement Lab Exercise

Menu

  • About
  • Privacy Policy
  • Copyright

Quick Links

  • Learn PLC
  • Helping Hand
  • Part Time Job

YouTube Subscribe

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?