Inst ToolsInst ToolsInst Tools
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Search
  • Books
  • Software
  • Projects
  • Process
  • Tools
  • Basics
  • Formula
  • Power Plant
  • Root Cause Analysis
  • Electrical Basics
  • Animation
  • Standards
  • 4-20 mA Course
  • Siemens PLC Course
Reading: Recognizing a Porpoising PID Controller
Share
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Courses
  • Design
  • PLC
  • Interview
  • Control System
Search
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools > Blog > Control Systems > Recognizing a Porpoising PID Controller

Recognizing a Porpoising PID Controller

Last updated: July 7, 2018 9:12 am
Editorial Staff
Control Systems
No Comments
Share
3 Min Read
SHARE

An interesting case of over-tuning is when the process variable “porpoises”  (Note 1 ) on its way to setpoint following a step-change in setpoint.

Note 1 : The term “porpoise” comes from the movements of a porpoise swimming rapidly toward the water’s surface as it chases along the bow of a moving ship. In order to generate speed, the animal undulates its body up and down to powerfully drive forward with its horizontal tail, tracing a sinusoidal path on its way up to breaching the surface of the water.

The following trend shows such a response:

Porpoising PID Controller

“Porpoising” is universally poor behavior for a loop, because it combines the negative consequences of over-tuning (instability and excessive valve travel) with the negative consequence of under-tuning (delay achieving setpoint). There is no practical purpose served by a loop “porpoising,” and so this behavior should be avoided if at all possible.

Thankfully, identifying the cause of “porpoising” is rather easy to do. Only two control actions are capable of causing this response: proportional and derivative. Integral action simply cannot cause porpoising. In order for the process variable to “porpoise,” the controller’s output signal must reverse direction before the process variable ever reaches setpoint. Integral action, however, will always drive the output in a consistent direction when the process variable is on one side of setpoint. Only proportional and derivative actions are capable of producing a directional change in the output signal prior to reaching setpoint.

Solely examining the process variable waveform will not reveal whether it is proportional action, derivative action, or both responsible for the “porpoising” behavior. A trial reduction in the derivative (Note 2 ) tuning parameter is one way to identify the culprit, as is phase-shift analysis between the PV and output waveforms during the “porpoising” period.

Note 2 : You could try reducing the controller’s gain as a first step, but if the controller implements the Ideal or Series algorithm, reduction in gain will also reduce derivative action, which may mask an over-tuned derivative problem.

Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !

Continue Reading

What are Analog and Digital Signals? Differences, Examples
Example of Feedback System
Safety in Automation Systems
Design View of Supplying Process Control and Safety Systems
Instrumentation and Control (I&C) Design
What is a Feedback Control System? Types & Advantages
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
Leave a Comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
210kSubscribersSubscribe
38kFollowersFollow

Categories

Explore More

How Process Control Loop Works
Capacitive Coupling Effects
Five Levels in Industrial Automation
Animation of Electromagnetic Relay
How to Analyze PID Controller Actions
Python in Industrial Automation and Control Systems
De-energize to Safe Loop philosophy
Basics of Process Control Systems

Keep Learning

What is Instrumentation and Control

What is Instrumentation and Control ?

Concept of DCS in Industrial Automation

Concept of DCS in Industrial Automation

Centralized vs Decentralized Automation Systems

Centralized vs Decentralized Automation Systems

Industrial Control Systems Security

Comparing ICS and IT Systems Security

Four Wire HART Transmitters

4-wire Passive versus Active Transmitters

DCS Alarm and Setpoint

Setpoints and Alarms in Control System

Derivative Controller Response

Derivative Controller Principle

PlantPAx DCS

Introduction to PlantPAx Distributed Control System

Learn More

Test and Electrical Measurement Objective Questions and Answers

100 Test and Electrical Measurement Objective Questions and Answers

Calibration of Temperature Sensor with Indicator

Calibration of Temperature Sensor with Indicator

Innovative Segment Orifice

Pitot-tube Replaced with Innovative Segment Orifice Plate

Advantages & Disadvantages of Air Insulated Substation

Advantages & Disadvantages of Air Insulated Substation

PLC Programming for Train Detection and Gate Operation

PLC Programming for Train Detection and Gate Operation

Electronics and Instrumentation Students Quiz

Electronics and Instrumentation Students Quiz

level control system

Practical Process Control System Questions & Answers – 10

DCS Commissioning Steps

DCS Commissioning Steps

Menu

  • About
  • Privacy Policy
  • Copyright

Quick Links

  • Learn PLC
  • Helping Hand
  • Part Time Job

YouTube Subscribe

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?