Inst ToolsInst ToolsInst Tools
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Search
  • Books
  • Software
  • Projects
  • Process
  • Tools
  • Basics
  • Formula
  • Power Plant
  • Root Cause Analysis
  • Electrical Basics
  • Animation
  • Standards
  • 4-20 mA Course
  • Siemens PLC Course
Reading: Recognizing a Porpoising PID Controller
Share
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Courses
  • Design
  • PLC
  • Interview
  • Control System
Search
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools > Blog > Control Systems > Recognizing a Porpoising PID Controller

Recognizing a Porpoising PID Controller

Last updated: July 7, 2018 9:12 am
Editorial Staff
Control Systems
No Comments
Share
3 Min Read
SHARE

An interesting case of over-tuning is when the process variable “porpoises”  (Note 1 ) on its way to setpoint following a step-change in setpoint.

Note 1 : The term “porpoise” comes from the movements of a porpoise swimming rapidly toward the water’s surface as it chases along the bow of a moving ship. In order to generate speed, the animal undulates its body up and down to powerfully drive forward with its horizontal tail, tracing a sinusoidal path on its way up to breaching the surface of the water.

The following trend shows such a response:

Porpoising PID Controller

“Porpoising” is universally poor behavior for a loop, because it combines the negative consequences of over-tuning (instability and excessive valve travel) with the negative consequence of under-tuning (delay achieving setpoint). There is no practical purpose served by a loop “porpoising,” and so this behavior should be avoided if at all possible.

Thankfully, identifying the cause of “porpoising” is rather easy to do. Only two control actions are capable of causing this response: proportional and derivative. Integral action simply cannot cause porpoising. In order for the process variable to “porpoise,” the controller’s output signal must reverse direction before the process variable ever reaches setpoint. Integral action, however, will always drive the output in a consistent direction when the process variable is on one side of setpoint. Only proportional and derivative actions are capable of producing a directional change in the output signal prior to reaching setpoint.

Solely examining the process variable waveform will not reveal whether it is proportional action, derivative action, or both responsible for the “porpoising” behavior. A trial reduction in the derivative (Note 2 ) tuning parameter is one way to identify the culprit, as is phase-shift analysis between the PV and output waveforms during the “porpoising” period.

Note 2 : You could try reducing the controller’s gain as a first step, but if the controller implements the Ideal or Series algorithm, reduction in gain will also reduce derivative action, which may mask an over-tuned derivative problem.

Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !

Continue Reading

Node-RED in PLC Industrial Automation
Troubleshooting Pump Control Circuit
Why we use Diode Protection Modules ?
What is WHCP?
Control Room Design Guidelines
Interactions With Process Control Systems Philosophy
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
Leave a Comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
210kSubscribersSubscribe
38kFollowersFollow

Categories

Explore More

Proportional Controller Principle
What is Energy Monitoring System ?
What are Analog and Digital Signals? Differences, Examples
Identify Faults in PID Control Loop
What is Electromagnetic Noise Interference?
Serial Communication Error Checking Methods and Algorithms
Selector Control Functions
Pre-commissioning or Commissioning Activities

Keep Learning

Loop-powered 4-20 mA transmitter

Loop-powered 4-20 mA Transmitter Circuit Voltage drop

Process Override Switch

What is Process Override Switch (POS)?

PID Tuning recommendations

PID Tuning Recommendations based on Process Dynamics

4 TO 20 MA ANALOG CURRENT SIGNALS

Basics of 4 to 20 mA analog Signals

System Architecture in Industrial Automation

How to Design a System Architecture in Industrial Automation?

ICS System Design

ICS System Design Considerations

Instrumentation During the Detail Design Phase

Instrumentation Engineer Activities & Documents – Detail Design Phase

Ziegler-Nichols Open Loop Tuning Procedure

Ziegler-Nichols Open Loop Tuning Procedure

Learn More

Baffle Nozzle Question

Baffle Nozzle Question

Instrument Junction Box

Instrumentation System Architecture

Optical Level Switch Principle

Optical Level Switch Working Principle

PSV lift pressure

Calculate PSV Lift Pressure

Electrostatic Precipitator

Principle of Operation of an Electrostatic Precipitator

Full Bore or Reduced Bore Valves

When to choose Full Bore Valve or Reduced Bore Valve ?

Percentage-to-Process-Variable-Conversion

Formula for Percentage to Process Variable Conversion

Nonlinear Control Systems

Construction of Phase -Trajectories

Menu

  • About
  • Privacy Policy
  • Copyright

Quick Links

  • Learn PLC
  • Helping Hand
  • Part Time Job

YouTube Subscribe

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?