Inst ToolsInst ToolsInst Tools
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Search
  • Books
  • Software
  • Projects
  • Process
  • Tools
  • Basics
  • Formula
  • Power Plant
  • Root Cause Analysis
  • Electrical Basics
  • Animation
  • Standards
  • 4-20 mA Course
  • Siemens PLC Course
Reading: Quick Exhaust and Air Operated Valves in Instrumentation Circuit
Share
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Courses
  • Design
  • PLC
  • Interview
  • Control System
Search
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools > Blog > Control Valves > Quick Exhaust and Air Operated Valves in Instrumentation Circuit

Quick Exhaust and Air Operated Valves in Instrumentation Circuit

Understanding the application of Quick exhaust and Air operated valves in instrumentation circuits with sample cases.

Last updated: August 15, 2023 6:52 am
Editorial Staff
Control Valves
No Comments
Share
5 Min Read
SHARE

Understanding the application of Quick exhaust and Air operated valves in instrumentation circuits with sample cases.

Contents
Quick Exhaust Valve (QEV)Pilot / Air Operated Valve

Before looking into the application of Quick Exhaust Valve (QEV) and Air operated valves in instrumentations. Let’s go through the definitions of the same.

Quick Exhaust Valve (QEV)

The quick exhaust valve is a three-way valve that works primarily on the differential pressure between inlet and outlet ports.

Quick Exhaust Valve (QEV) finds application wherever there is a necessity for faster stroking time or air from the cylinder need to be exhausted quickly.

Quick Exhaust Valve (QEV)

Pilot / Air Operated Valve

The pilot Valve is the same as the solenoid valve, however, instead of an electric signal, an air pressure signal shall be used to direct the spool to either keep it closed or open.

Pilot Valve P&ID

In process and automation industries, QEV and Pilot valves are used widely in Actuator and pneumatic cylinders for quick exhaust and stroking applications. Let us go through the below scenarios and understand where the application demands the use of QEV or Pilot valve 

Suppose if we are having SOV, QEV, and PV of below sizes and flow capacity, let’s see how we can efficiently use the available ones with the below sample cases

ComponentPort SizeFlow Capability – Cv (m3/hr)Average Cost (INR)
SOV1/4″ NPT0.536000
QEV1/4″ NPT1.14000
PV1/4″ NPT1.55500

Case 1:

Taking 6 Inch Valve which is actuated by a pneumatic actuator with a cylinder volume of 10.37 liters.

Valve Size (Inch)ACT cylinder Volume (Ltr)Stroking time (sec) – OpeningStroking time (sec) – ClosingRequired Flow capacity (m3/hr) – OpeningRequired Flow capacity (m3/hr) – Closing
610.3730300.2190.183

Here the actuator requires air flow capacity of 0.219 and 0.183 in opening and closing of the valve respectively, which is lower than the SOV flow capacity of 0.53.

So the stroking of the actuator can be performed by SOV easily and usage of QEV and PV is not required.

SOV control circuit

Case 2:

Valve Size (Inch)ACT cylinder Volume (Ltr)Stroking time (sec) – OpeningStroking time (sec) – ClosingRequired Flow capacity (m3/hr) – OpeningRequired Flow capacity (m3/hr) – Closing
610.373060.2190.765

In this case, the required flow capacity in the closing of the valve is higher than the SOV’s Cv of 0.53.

However the above-mentioned QEV has a flow of 1.1, which shall meet this requirement.

Note: Even a pilot valve can be used for this circuit, however, the flow capacity is higher only during the closing of the valve, so using QEV will be an cost-efficient option

Quick Exhaust Valve (QEV) Control circuit

Case 3:

Valve Size (Inch)ACT cylinder Volume (Ltr)Stroking time (sec) – OpeningStroking time (sec) – ClosingRequired Flow capacity (m3/hr) – OpeningRequired Flow capacity (m3/hr) – Closing
610.37661.3701.150

Since the required flow capacity of the actuator is higher in both opening and closing positions. A Pilot valve with a flow capacity of 1.5 can be employed here to stroke the valve.

Note: Instead of Pilot Valve, an SOV of ½” port size can also be used, however, its the cost would be very high, and going with a pilot valve and ¼” port size SOV in the pilot line would be the cost-effective option.

Pilot Valve (PV) control circuit

Author: Jamal Shagul Ameedh JM

If you liked this article, then please subscribe to our YouTube Channel for Instrumentation, Electrical, PLC, and SCADA video tutorials.

You can also follow us on Facebook and Twitter to receive daily updates.

Read Next:

  • On-Off Valve Problems
  • Control Valve Design Factors
  • Solenoid and Motorized Valves
  • Control Valve Maintenance
  • Butterfly Valves and Ball Valves
Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !

Continue Reading

When to choose Full Bore Valve or Reduced Bore Valve ?
What is Tilting Disk Check Valve ?
Inspection and Test Requirement of Control Valves
Control Valve Testing for Noise Measurement
What is an Air Valve? Purpose, Types, Advantages, Disadvantages
Air Pressure Regulator Questions
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
Leave a Comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
210kSubscribersSubscribe
38kFollowersFollow

Categories

Explore More

How Ball Valves Work ?
What is Directional Control Valve (DCV)?
Pressure to Current (P/I) Converter Principle
What is a Disc Valve ?
Control Valves Chemical attack Problems
Effect of Differential Pressure on Control Valve Lift
Control Valve Interview Questions and Answers
Solenoid Valves Types & Functions

Keep Learning

Types of Control Valves

Fundamentals of Valves and their Types

Control Valve Positioner Working Principle

Control Valve Positioner Working Principle

Pneumatic Actuators

Self-Actuated Valves, Pneumatic & Hydraulic Actuators

gate-valve-principle-animation

Basics of Gate Valves

Direct Lift Diaphragm Normally Open Solenoid Valve

Direct Lift Diaphragm Solenoid Valve Principle

3-way solenoid valve Normally Open

What is a 3-way Solenoid Valve ?

Needle Valve Schematic

How Needle Valve Works ?

Emergency ShutDown Valve Working Principle

ESDV : How it Works ?

Learn More

Difference between Orifice & Restriction Orifice

Digital Electronics Objective Questions

Digital Electronics Objective Questions – Set 3

Test Automation in Production Environment

Test Automation in Production Environment – Everything You Should Know

Principle of ultrasonic testing

Ultrasonic Testing (UT) : Principle, Advantages, Disadvantages

How to Create Faceplate in FactoryTalk View Studio

How to Create Faceplate in FactoryTalk View Studio?

Limit Switches Wiring

Draw Limit Switch Symbol ?

Top Electrical Engineering Interview Questions for Freshers

Latest Electrical Motors Questions and Answers

Energy Meter Data in PLC using Modbus Communication

Modbus Communication between PLC and Energy Meter

Menu

  • About
  • Privacy Policy
  • Copyright

Quick Links

  • Learn PLC
  • Helping Hand
  • Part Time Job

YouTube Subscribe

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?