Inst ToolsInst ToolsInst Tools
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Search
  • Books
  • Software
  • Projects
  • Process
  • Tools
  • Basics
  • Formula
  • Power Plant
  • Root Cause Analysis
  • Electrical Basics
  • Animation
  • Standards
  • 4-20 mA Course
  • Siemens PLC Course
Reading: Quantitative PID tuning procedures
Share
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Courses
  • Design
  • PLC
  • Interview
  • Control System
Search
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools > Blog > Control Systems > Quantitative PID tuning procedures

Quantitative PID tuning procedures

Last updated: November 16, 2018 3:14 pm
Editorial Staff
Control Systems
No Comments
Share
4 Min Read
SHARE

A quantitative PID tuning procedure is a step-by-step approach leading directly to a set of numerical values to be used in a PID controller. These procedures may be split into two categories: open loop and closed loop. An “open loop” tuning procedure is implemented with the controller in manual mode: introducing a step-change to the controller output and then mathematically analyzing the results of the process variable response to calculate appropriate PID settings for the controller to use when placed into automatic mode.

A “closed loop” tuning procedure is implemented with the controller in automatic mode: adjusting tuning parameters to achieve an easily-defined result, then using those PID parameter values and information from a graph of the process variable over time to calculate new PID parameters.

Quantitative PID tuning got its start with a paper published in the November 1942 Transactions of the American Society of Mechanical Engineers written by two engineers named Ziegler and Nichols. “Optimum Settings For Automatic Controllers” is a seminal paper, and deserves to be read by every serious student of process control theory. That Ziegler’s and Nichols’ recommendations for PID controller settings may still be found in modern references more than 60 years after publication is a testament to its impact in the field of industrial control.

Although dated in its terminology and references to pneumatic controller technology (some controllers mentioned as not even having adjustable proportional response, and others as having only discrete degrees of reset adjustment rather than continuously variable settings!), the PID algorithm described by its authors and the effects of P, I, and D adjustments on process control behavior are as valid today as they were then.

This article is devoted to a discussion of quantitative PID tuning procedures in general, and the “Ziegler-Nichols” methods in specific. It is the opinion of this author that the Ziegler-Nichols tuning methods are useful primarily as historical references, and indeed suffer from serious practical impediments. The most serious reservation I have with the Ziegler-Nichols methods (and in fact any algorithmic procedure for PID tuning) is that these methods tend to absolve the practitioner of responsibility for understanding the process they intend to tune.

Any time you provide people with step-by-step instructions to perform complex tasks, there will be a great many readers of those instructions tempted to mindlessly follow the instructions, even to their doom. PID tuning is one of these “complex tasks,” and there is significant likelihood for a person to do more harm than good if all they do is implement a step-by-step approach rather than understand what they are doing, why they are doing it, and what it means if the results do not meet with satisfaction. Please bear this in mind as you study any PID tuning procedure, Ziegler-Nichols or otherwise.

Types of Quantitative PID tuning procedures

  1. Ziegler-Nichols Closed-Loop Method
  2. Ziegler-Nichols Open-Loop Method
  3. Heuristic PID Tuning Method
Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !

Continue Reading

What is Feedforward Control ?
Recognizing an Over-Tuned PID Controller by Phase Shift
Difference Between Serial and Parallel Communication
De-energize to Safe Loop philosophy
Fundamental Motion Control Commands
PID Controllers : Parallel, Ideal & Series
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
Leave a Comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
210kSubscribersSubscribe
38kFollowersFollow

Categories

Explore More

What is a Transducer ?
What is the DDE Protocol?
Ziegler-Nichols Closed Loop Tuning Procedure
Automation System Process Functionalities
Modbus Function Codes and Addresses
What is an Electrical Drive? Types, Advantages, Disadvantages
Hot Well Level Control System in Condensing Turbine
Instrumentation and Control Project Packages – Detail Engineering

Keep Learning

Types of Noise in Electronics

Types of Noise in Electronics

how-to-avoid-bad-grounds

How to Avoid Bad Grounds ?

Temperature Controller Problem

Temperature Controller Problem

Python in Industrial Automation

Python in Industrial Automation and Control Systems

Overview of Industrial Control Systems

Overview of Industrial Control Systems

Enterprise Resource Planning in Industrial Automation

What is ERP in Industrial Automation? – Enterprise Resource Planning

Typical process control loop

How Process Control Loop Works

Boiler Drum Level Control Systems

Boiler Drum Level Control Systems

Learn More

Wire Guided Float Detectors

Inductively Coupled Wire Guided Float Detectors

Electrical Machines Questions and Answers

Polyphase Induction Motors Quiz

Ziegler-Nichols closed-loop Tuning

Ziegler-Nichols Closed-Loop Method (Ultimate Gain)

Electric Motors Efficiency Classes

Electric Motors Efficiency Classes

PLC program for bread oven

Bread Oven Control in Auto and Manual Modes PLC Program

Barometer Principle

What is a Barometer?

Electron Gun of CRT

Electron Gun of Cathode Ray Tube

pH Monitoring System Triggers an Alarm

pH Monitoring System Triggers an Alarm

Menu

  • About
  • Privacy Policy
  • Copyright

Quick Links

  • Learn PLC
  • Helping Hand
  • Part Time Job

YouTube Subscribe

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?