Inst ToolsInst ToolsInst Tools
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Search
  • Books
  • Software
  • Projects
  • Process
  • Tools
  • Basics
  • Formula
  • Power Plant
  • Root Cause Analysis
  • Electrical Basics
  • Animation
  • Standards
  • 4-20 mA Course
  • Siemens PLC Course
Reading: Instrumentation Basics – Range Conversion Formula and Examples
Share
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Courses
  • Design
  • PLC
  • Interview
  • Control System
Search
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools > Blog > Formulas > Instrumentation Basics – Range Conversion Formula and Examples

Instrumentation Basics – Range Conversion Formula and Examples

In this article, you will learn the instrumentation basics and transmitter range conversion formula, and industry examples.

Last updated: June 21, 2022 6:26 pm
Editorial Staff
Formulas
2 Comments
Share
5 Min Read
SHARE

We encounter many transmitters in daily activities like preventive maintenance, breakdown, or commissioning activities.

Contents
Instrumentation BasicsInstrument Range Conversion – Method 1Instrument Range Conversion – Method 2

We may need to convert any given transmitter range to other range like from (0oC – 100oC) to (4 mA – 20 mA) or (0 kg/cm2 – 10 kg/cm2) to (3 psi – 15 psi) or (0 mmH2O – 2000 mmH2O) to (0% – 100%), etc.

Instrumentation Basics

Instrumentation Basics - Range Conversion Formula and Examples

All the above conversions are easy to implement. But now think of a case in which you are supposed to convert from (-250oC to 150oC) to (4 mA to 20 mA) or any such instrument range which has uneven starting and endpoints.

Don’t worry friends, in this article we will learn two methods to convert the value from one range to another range.

Instrument Range Conversion – Method 1

This method might be known to many engineers who are reading this article. But still, we don’t use it frequently because we often forget the formula.

Every transmitter range has two parameters which are LRV and URV. Here LRV means lower range value and URV means upper range value.

Let us recall the method. Suppose the first range is having LRV and URV as LRV_1 and URV_1 and another range has LRV_2 and URV_2.

Desired values are Value_1 and Value_2 in both ranges.

So, we use the below formula:

Range Conversion Formula

Let us see an example.

Suppose range one is 0 kg/cm2 – 100 kg/cm2

Range two is 4 mA to 20 mA

What will be value corresponding to 25 kg/cm2? (in milli amps)

Here Value_1 = 25

LRV_1 = 0

URV_1 = 100

Value_2 = to be calculated

LRV_2 = 4

URV_2 = 20

Put these values into the formula

(25-0) / (100-0) = ((Value_2) – 4) / (20-4)

25/100 = (Value_2 – 4) / 16

0.25 = (Value_2 – 4) / 16

Value_2 – 4 = 0.25 x 16

Value_2 = 4 + 4

Solving this equation, we get

Value_2 = 8

Hence for 25 kg/cm2, we get 8 mA as a proportional value.

This was quite an easy calculation that can even be done without using this formula.

Now have a look at the below example.

Range one: -70 o C to 190 o C

Range two: 4 mA to 20 mA

What will be the value corresponding to 50 o C? (in milli amps)

Put all values in our standard equation.

(50-(-70)) / (190-(-70)) = ((Value_2)-4) / (20-4)

120/260 = (Value_2 – 4)/16

0.4615 = (Value_2 – 4)/16

Value_2 – 4 = (0.4615 x 16)

Value_2 = 7.384 + 4

Solving this equation, we get

Value_2 = 11.384 mA

This is the first method.

Now let us see the second method which is for those who do not want to remember the formula.

Instrument Range Conversion – Method 2

Let us see this method by taking an instrument example. Let us take the above example only

Range one: -70oC to 190oC

Range two: 4 mA to 20 mA

We need to calculate the equivalent milli amperes for the value of 50oC

First, calculate how much % is 50oC in the range of -70oC to 190oC.

The range is 260oC

For this we will use a simple formula :

50-(-70)  —->  260

     ?      <—-  100

We have to take 50-(-70) because we want absolute value from LRV.

We get,

(100*120)/260 = 46.1538 %

Now we need a 46.1538% value for the 4 mA to 20 mA range

Divide the above value by 100. (46/100 = 0.461538)

Here 16 is the difference between URV and LRV.

So, multiply 0.461538 by 16. We get 7.3846.

Now add this value to our LRV. (7.3846 + 4)

We get 11.3846 mA which is our required value.

This is how we can convert values from one range to another.

If you liked this article, then please subscribe to our YouTube Channel for Instrumentation, Electrical, PLC, and SCADA video tutorials.

You can also follow us on Facebook and Twitter to receive daily updates.

Read Next:

  • 4 to 20 mA Formula
  • Calculate Process Variable
  • How to do 4-20mA Conversion
  • Raw Counts to Engineering Units
  • Turbine Flow meter Coefficient
Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !

Continue Reading

Remote Seal Transmitters Ranging Calculation
Formula to Calculate 4-20 mA from Process Variable
Siemens Differential Pressure Transmitter Calculations (Flange Type)
Transmitter Turndown Ratio, Set Span and Zero Span
4-20mA Formulas and Examples
Level Calculation with Remote Seals
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
2 Comments
  • Rafael Ramirez says:
    June 16, 2022 at 12:43 am

    I would love more training on all these courses

    Reply
  • JULFIHAR says:
    March 17, 2023 at 2:11 am

    Thermocouple k and j type
    . I know mv , how to find degree ? Formula
    I know degree , how to find mv ? Formula
    Please.

    Reply

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
210kSubscribersSubscribe
38kFollowersFollow

Categories

Explore More

Example of 3-15 psi to 4-20mA Conversion
Open Tank DP Level Transmitter Calculations
Formula to Calculate Process Variable from 4-20mA
Relationship between Temperature Scales
Formula for Current 4-20ma to Percentage Conversion
Gas Flow Formulas
Raw Counts to Engineering Units : Conversion Formula
Closed Tank Remote Seal Capillary type DP Transmitter

Keep Learning

Kv-value of a valve is determined by a standardised test

Calculate Flow Coefficient Kv of Solenoid Valve

Control Valve Cv Formula

Control Valve Cv calculation

Formula for 4-20mA from 3-15PSI

Formula to Calculate 3-15psi from 4-20mA Current

Flow Transmitter Output Current Calculation

Calculate Flow Transmitter Output Current

PLC Problems Troubleshooting

PLC Problems Troubleshooting

RTD Graph

Calculate Temperature Coefficient of RTD

Instrument Percent of Span Error

Instrument Percent of Span Error

Scaling Sensor Output to Engineering Units

Scaling Sensor Output to Engineering Units

Learn More

Transistor as Switch Working Animation

How a Transistor Switch Works

Pressure Gauge Datasheet Preparation

How to Prepare Pressure Gauge Datasheet ?

Types of Industrial Relays

What is a Relay? Types of Industrial Relays

Electropneumatic Valve Positioner Working Principle

Electro Pneumatic Valve Positioner Schematic & Principle

Nano Instrumentation Objective Questions

Nano Instrumentation Objective Questions

Electrical Machines Questions and Answers

Induction Machines Quiz Questions

Two Hand Press PLC

Two Hand Press Safety Control Circuit

Purpose of Emergency Shutdown (ESD) System

Purpose of Emergency Shutdown (ESD) System

Menu

  • About
  • Privacy Policy
  • Copyright

Quick Links

  • Learn PLC
  • Helping Hand
  • Part Time Job

YouTube Subscribe

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?