Inst ToolsInst ToolsInst Tools
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Search
  • Books
  • Software
  • Projects
  • Process
  • Tools
  • Basics
  • Formula
  • Power Plant
  • Root Cause Analysis
  • Electrical Basics
  • Animation
  • Standards
  • 4-20 mA Course
  • Siemens PLC Course
Reading: DC Motor Speed
Share
Notification Show More
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Courses
  • Design
  • PLC
  • Interview
  • Control System
Search
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools > Blog > Electrical Theory > DC Motor Speed

DC Motor Speed

Last updated: July 29, 2018 11:43 am
Editorial Staff
Electrical Theory
No Comments
Share
2 Min Read
SHARE

The field of a DC motor is varied using external devices, usually field resistors. For a constant applied voltage to the field (E), as the resistance of the field (Rf) is lowered, the amount of current flow through the field (If) increases as shown by Ohm’s law in below Equation.

DC Motor Speed Equation

An increase in field current will cause field flux (Φf ) to increase. Conversely, if the resistance of the field is increased, field flux will decrease. If the field flux of a DC motor is decreased, the motor speed will increase. The reduction of field strength reduces the CEMF of the motor, since fewer lines of flux are being cut by the armature conductors, as shown in below Equation.

DC Motor Speed Equation - 1

A reduction of counter EMF allows an increase in armature current as shown in below Equation.

DC Motor Speed Equation - 2

This increase in armature current causes a larger torque to be developed; the increase in armature current more than offsets the decrease in field flux as shown in below Equation.

DC Motor Speed Equation - 3

This increased torque causes the motor to increase in speed.

DC Motor Speed Equation - 4

This increase in speed will then proportionately increase the CEMF. The speed and CEMF will continue to increase until the armature current and torque are reduced to values just large enough to supply the load at a new constant speed.

Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !

Continue Reading

Units of Electrical Measurement
Block Diagram
DC Generator Internal Losses
What is Synchroscope ?
Methods of Producing Voltage (Electricity)
Capacitance and Capacitive Reactance
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
Leave a Comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
210kSubscribersSubscribe
38kFollowersFollow

Categories

Explore More

AC Motor Theory
Impedance in RC Circuits
Applying Kirchhoff’s Current Law
AC Induction Motor Slip
Three Phase Transformer Connections
Series and Parallel Capacitors
Moving Iron Vane Meter Movement
Multimeter & Megger Principle

Keep Learning

Electron Flow Through Battery

Batteries Theory

Measuring Circuit Voltage

Voltmeters

Electric Short Circuit

Electric Circuit : Open & Short Circuits

Ammeter with Shunt

Ammeter

Voltage Drop in a Series Circuit

Series Resistance

Single Phase Motor Manual Controller

Motor Controllers

Three-Phase Wye Wiring System

4-Wire, Three-Phase Wye Wiring System

Capacitive Time Constant for Charging Capacitor

Capacitive Time Constant

Learn More

Industrial Star Delta Starter for 3-Phase Induction Motor

Star Delta Starter – Working, Circuit, Advantages, Disadvantages

Introduction to PLC

Introduction to PLC – Advantages of PLC

Basics of Thyristor

Basics of Thyristor

Frequency Response MCQ

All-pass & Minimum-phase Systems

Single Line Diagram (SLD) Example

Electrical Drawings

BLDC Motor Vs AC Induction Motor

compressor emergency shutdown system

Solenoid Valves Questions & Answers – 2

Communication between Intouch Scada and Allen Bradley PLC

Communication between InTouch Scada and Allen Bradley PLC

Menu

  • About
  • Privacy Policy
  • Copyright

Quick Links

  • Learn PLC
  • Helping Hand
  • Part Time Job

YouTube Subscribe

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?