Inst ToolsInst ToolsInst Tools
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Search
  • Books
  • Software
  • Projects
  • Process
  • Tools
  • Basics
  • Formula
  • Power Plant
  • Root Cause Analysis
  • Electrical Basics
  • Animation
  • Standards
  • 4-20 mA Course
  • Siemens PLC Course
Reading: Resistivity
Share
Notification Show More
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Courses
  • Design
  • PLC
  • Interview
  • Control System
Search
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools > Blog > Electrical Theory > Resistivity

Resistivity

Last updated: July 23, 2018 10:31 am
Editorial Staff
Electrical Theory
No Comments
Share
2 Min Read
SHARE

Resistivity is defined as the measure of the resistance a material imposes on current flow. The resistance of a given length of conductor depends upon the resistivity of that material, the length of the conductor, and the cross-sectional area of the conductor, according to Equation.

Resistivity

where

R = resistance of conductor, Ω
ρ = specific resistance or resistivity cm-Ω/ft
L = length of conductor, ft
A = cross-sectional area of conductor, cm

The resistivity ρ (rho) allows different materials to be compared for resistance, according to their nature, without regard to length or area. The higher the value of ρ, the higher the resistance.

Table 1 gives resistivity values for metals having the standard wire size of one foot in length and a cross-sectional area of 1 cm.

Properties of Conducting Materials

(a) Precise values depend on exact composition of material.

(b) Carbon has 2500-7500 times the resistance of copper.

Temperature Coefficient of Resistance

Temperature coefficient of resistance, α (alpha), is defined as the amount of change of the resistance of a material for a given change in temperature. A positive value of α indicates that R increases with temperature; a negative value of α indicates R decreases; and zero α indicates that R is constant. Typical values are listed in Table 2.

Temperature Coefficients for Various Materials

For a given material, α may vary with temperature; therefore, charts are often used to describe how resistance of a material varies with temperature.

An increase in resistance can be approximated from equation.

Temperature Coefficient of Resistance

where

Rt = higher resistance at higher temperatures
R0 = resistance at 0 degc temperature
α = temperature coefficient
∆T = change in temperature

Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !

Continue Reading

Batteries Theory
DC Machines Construction
Shunt-Wound Motor Operation
Circuit Breaker Control Circuit
Transformer Theory of Operation
Series-Wound Motor
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
Leave a Comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
210kSubscribersSubscribe
38kFollowersFollow

Categories

Explore More

Inductive Time Constant
Shunt-Wound DC Generators
Electric Circuit : Open & Short Circuits
Series-Wound DC Generators
Battery Terminology
AC Generation Analysis : Effective Values, Phase Angle and Frequency
Magnetism
Resonance, Resonant Frequency, Series and Parallel Resonance

Keep Learning

Power Factor Meter Principle

Power Factor Meter Principle

3 Phase Balanced Loads

Power in Balanced 3 Phase Loads

Calculate Power in Parallel RCL Circuit

Calculate Power in Parallel RCL Circuit

Moving Iron Vane Meter Movement

Moving Iron Vane Meter Movement

Series Circuit

Series Circuit

Battery Hazard

Battery Hazards

Marking Polarity

DC Circuit Analysis Loop Equations

Power Triangle

Power Triangle

Learn More

Flame Ionization Detector (FID)

Flame Ionization Detector (FID) Principle

Smart DP transmitter Formula

Smart DP Transmitter Flow Meter Calculations

Emergency Stop Push button

Emergency Stop Switch Spurious Trip

AI Technology in Video Surveillance

Next-Generation Security Surveillance Systems – AI Technology

Software Testing Projects

Software Testing Projects – How to Approach the Process Effectively?

Control Valve flow coefficient (Cv)

Why we Measure Control Valve flow coefficient (Cv)?

Pyrometer Principle

Optical Pyrometer Working Principle Animation

Power Electronics Objective Questions

Types of Diodes Quiz

Menu

  • About
  • Privacy Policy
  • Copyright

Quick Links

  • Learn PLC
  • Helping Hand
  • Part Time Job

YouTube Subscribe

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?