Inst ToolsInst ToolsInst Tools
  • Ask
  • Courses
  • Videos
  • Q & A
    • Interview
      • Instrumentation
      • Electronics
      • Electrical
      • Practical Questions
    • MCQ
      • Instrumentation MCQ
      • Electrical MCQ
      • Electronics MCQ
      • Control Systems MCQ
      • Analog Electronics MCQ
      • Digital Electronics MCQ
      • Power Electronics MCQ
      • Microprocessor MCQ
      • Multiple Choice Questions
  • EE
    • Electronics
      • Electronics Q & A
      • Electronic Basics
      • Electronic Devices & Circuits
      • Electronics Animation
      • Digital Electronics
    • Electrical
      • Electrical Basics
      • Electrical Q & A
      • Power Electronics
      • Electrical Machines
      • Electrical Animation
      • Power Systems
      • Switchgear & Protection
      • Transmission & Distribution
  • Measure
    • Control Valves
    • Calibration
    • Temperature
    • Pressure
    • Flow
    • Level
    • Analyzers
    • Switches
    • Vibration
    • Solenoid Valve
  • Control
    • PLC Tutorials
    • Control Systems
    • Safety Instrumented System (SIS)
    • Communication
    • Fire & Gas System
  • More
    • Design
    • Tools
    • Animation
    • Basics
    • Formulas
    • Standards
    • TextBooks
    • Common
    • Software
    • Excel Tools
    • Erection & Commissioning
    • Process Fundamentals
    • Videos
    • Books
Search
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Reading: Zener Diode Voltage Regulator Operation
Share
Notification Show More
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Courses
  • PLC Tutorials
  • Control Systems
Search
  • Ask
  • Courses
  • Videos
  • Q & A
    • Interview
    • MCQ
  • EE
    • Electronics
    • Electrical
  • Measure
    • Control Valves
    • Calibration
    • Temperature
    • Pressure
    • Flow
    • Level
    • Analyzers
    • Switches
    • Vibration
    • Solenoid Valve
  • Control
    • PLC Tutorials
    • Control Systems
    • Safety Instrumented System (SIS)
    • Communication
    • Fire & Gas System
  • More
    • Design
    • Tools
    • Animation
    • Basics
    • Formulas
    • Standards
    • TextBooks
    • Common
    • Software
    • Excel Tools
    • Erection & Commissioning
    • Process Fundamentals
    • Videos
    • Books
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools > Blog > Electronic Devices & Circuits > Zener Diode Voltage Regulator Operation

Zener Diode Voltage Regulator Operation

Last updated: November 17, 2017 9:05 am
Editorial Staff
Electronic Devices & Circuits
No Comments
Share
3 Min Read
SHARE

The zener diode can be used as a type of voltage regulator for providing stable reference voltages. In this section, you will see how zeners can be used as voltage references, regulators, and as simple limiters or clippers.

Zener Regulation with a Variable Input Voltage

Zener diode regulators can provide a reasonably constant dc level at the output, but they are not particularly efficient. For this reason, they are limited to applications that require only low current to the load. The Below Figure illustrates how a zener diode can be used to regulate a dc voltage. As the input voltage varies (within limits), the zener diode maintains a nearly constant output voltage across its terminals.

However, as VIN changes, IZ will change proportionally so that the limitations on the input voltage variation are set by the minimum and maximum current values (IZK and IZM) with which the zener can operate. Resistor R is the series current-limiting resistor. The meters indicate the relative values and trends.

Zener Diode Voltage Regulator Operation

Fig (a) : As the input voltage increases, the output voltage remains nearly constant (IZK < IZ < IZM).

Zener Diode Voltage Regulator

Fig (b) : As the input voltage decreases, the output voltage remains nearly constant (IZK < IZ < IZM).

Example :

To illustrate regulation, let’s use the ideal model of the 1N4740A zener diode (ignoring the zener resistance) in the circuit shown below. The absolute lowest current that will maintain regulation is specified at Izk which for the 1N4740A is 0.25 mA and represents the no-load current. The maximum current is not given on the datasheet but can be calculated from the power specification of 1 W, which is given on the datasheet. Keep in mind that both the minimum and maximum values are at the operating extremes and represent worst-case operation.

Zener Diode Circuit

Zener Diode Circuit Formula

For the minimum zener current, the voltage across the 220 ohms resistor is

Vr = Izk.R = (0.25 mA)(220 ohms) = 55 mV

Since VR = VIN – VZ,

Vin(min) = VR + VZ = 55 mV + 10 V = 10.055 V

For the maximum zener current, the voltage across the 220 ohms resistor is

VR = IzmR = (100 mA)(220 ohms) = 22 V

Therefore,

VIN(max) = 22 V + 10 V = 32 V

This shows that this zener diode can ideally regulate an input voltage from 10.055 V to 32 V and maintain an approximate 10 V output. The output will vary slightly because of the zener impedance, which has been neglected in these calculations.

Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !
Series and Parallel Resistors
Full Wave Bridge Rectifier Peak Inverse Voltage
Optocouplers Working Principle
Transistor Amplifier Working Principle
Difference between Schottky Diode and PN junction Diode
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
Leave a Comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
208kSubscribersSubscribe
38kFollowersFollow

Categories

Recent Comments

  • Guifty Shimica on Top Non-PLC Certification Courses for Automation Professionals
  • Guifty Shimica on Top Non-PLC Certification Courses for Automation Professionals
  • MIHARITSOA Aina Sitraka on Top Non-PLC Certification Courses for Automation Professionals
  • Vaishnavi on Free Instrumentation Course for Trainee Engineers

Related Articles

Transistor Emitter Feedback Bias

Transistor Emitter Feedback Bias

Full Wave Bridge Rectifier Operation

Full Wave Bridge Rectifier Operation

Basic Transistor Amplifier Circuit Principle

Basic Transistor Amplifier Circuit Principle

reverse-biased varactor diode

Varactor Diode Operation

diode-limiter-principle

Diode Limiters/Clippers Operation

Comparison of Half wave Rectifiers and Full wave Rectifiers

Comparison of Half wave Rectifiers and Full wave Rectifiers

What is a Memristor

What is a Memristor? Principle, Advantages, Applications

Current Divider Rule

Current Divider Rule

More Articles

Electrical Machines Questions and Answers

Induction Motors Flux & MMF Phasors and Waves Questions

A Question on Steam Drum Water Level Measurement

A Question on Steam Drum Water Level Measurement

Wiring Diagram Forward-Reverse for 3 Phase Motor

Motor Forward and Reverse Direction Control using Limit Switches

pn-junction-with-depletion-layer

How a PN Junction Formed in a Diode

single-acting-vs-double-acting-control-valve-actuators

Single Acting Vs Double Acting Actuators

Instruction List in PLC Programming

What is an Instruction List? – PLC Programming

Interview Questions on Transformers

Interview Questions on Transformers

displacer level transmitter configuration

Displacer Level Transmitter Questions

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?