Inst ToolsInst ToolsInst Tools
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Search
  • Books
  • Software
  • Projects
  • Process
  • Tools
  • Basics
  • Formula
  • Power Plant
  • Root Cause Analysis
  • Electrical Basics
  • Animation
  • Standards
  • 4-20 mA Course
  • Siemens PLC Course
Reading: Transistor Emitter Bias
Share
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Courses
  • Design
  • PLC
  • Interview
  • Control System
Search
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools > Blog > Electronic Devices & Circuits > Transistor Emitter Bias

Transistor Emitter Bias

Last updated: September 27, 2016 7:12 am
Editorial Staff
Electronic Devices & Circuits
No Comments
Share
2 Min Read
SHARE

Emitter bias provides excellent bias stability in spite of changes in β or temperature. It uses both a positive and a negative supply voltage. To obtain a reasonable estimate of the key dc values in an emitter-biased circuit, analysis is quite easy. In an npn circuit, such as shown in Figure, the small base current causes the base voltage to be slightly below ground.

The emitter voltage is one diode drop less than this. The combination of this small drop across RB and VBE forces the emitter to be at approximately  -1v. Using this approximation, you can obtain the emitter current as

transistor_emitter-current

VEE is entered as a negative value in this equation.

You can apply the approximation that IC = IE to calculate the collector voltage.

VC = VCC – ICRC

The approximation that VE = -1v is useful for troubleshooting because you won’t need to perform any detailed calculations. As in the case of voltage-divider bias, there is a more rigorous calculation for cases where you need a more exact result.

transistor-emitter-bias

The approximation that VE = -1v and the neglect of βDC may not be accurate enough for design work or detailed analysis. In this case, Kirchhoff’s voltage law can be applied as follows to develop a more detailed formula for IE. Kirchhoff’s voltage law applied around the base-emitter circuit in Figure (a), which has been redrawn in part (b) for analysis, gives the following equation:

transistor-emitter-bias-principle

VEE + VRB + VBE + VRE = 0

Substituting, using Ohm’s law,

VEE + IBRB + VBE + IERE = 0

transistor-emitter-bias-derivation

 

Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !

Continue Reading

Working of NPN Transistor
Combining Independent Current Sources in Parallel
Positive & Negative Diode Clippers
Transistor Base Bias
Shockley Diode Working Principle
Half Wave Voltage Doubler using Diodes
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
Leave a Comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
210kSubscribersSubscribe
38kFollowersFollow

Categories

Explore More

Peak Inverse Voltage of Center Tap Rectifier
Zener Diode Voltage Regulator Operation
Dependent Voltage Source
Optocouplers Working Principle
Dependent Current Source
Semiconductors Diodes Questions & Answers
How a Multi Color LED Works ?
Schottky Diode Working Principle

Keep Learning

Capacitor Filter Operation

Capacitor Filter Operation

Diode-vi-characteristic-curve-for-forward-bias

VI Characteristic of a Diode

Field Instruments Questions and Answers

Basics of Amplifiers Interview Questions

Transistor Stabilisation

Transistor Stabilisation

Electron Gun of CRT

Electron Gun of Cathode Ray Tube

Types of Resistors

Types of Resistors

Cathode Ray Tube Deflection System

Cathode Ray Tube Deflection System

Zener Diode

Zener Diode Breakdown Characteristics

Learn More

memory types in siemens plc

Memory Structure of Siemens PLC

hydrostatic interface measurement calculation

Hydrostatic Pressure Measurement Questions

PLC Program for Water filling and Discharging Process

PLC Program for Water filling and Discharging Process

Thermocouple Temperature Ranges

Thermocouple Temperature Range Questions and Answers

Radiochemical Questions and Answers

Gamma Camera Questions & Answers

Coal Hopper

Coal Based Fuel Feeding System for Boiler

magnetic-level-gauge-principle

Magnetic Level Gauge Working Principle Animation

Thermocouple Testing

Thermocouple Cold Junction Compensation

Menu

  • About
  • Privacy Policy
  • Copyright

Quick Links

  • Learn PLC
  • Helping Hand
  • Part Time Job

YouTube Subscribe

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?