Inst ToolsInst ToolsInst Tools
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Search
  • Books
  • Software
  • Projects
  • Process
  • Tools
  • Basics
  • Formula
  • Power Plant
  • Root Cause Analysis
  • Electrical Basics
  • Animation
  • Standards
  • 4-20 mA Course
  • Siemens PLC Course
Reading: Multiple Thermowell Installations Problems
Share
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Courses
  • Design
  • PLC
  • Interview
  • Control System
Search
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools > Blog > Erection & Commissioning > Multiple Thermowell Installations Problems

Multiple Thermowell Installations Problems

Last updated: August 8, 2018 4:37 pm
Editorial Staff
Erection & Commissioning Instrumentation Design
No Comments
Share
5 Min Read
SHARE

Vortex shedding

von Karman Vortex Street in laminar fluid flow

Fig: Color enhanced smoke trail showing von Karman Vortex Street in laminar fluid flow

Vortex Shedding effects on Multiple Thermowell Installations

Thermowells are essentially a circular cylinder installed like a cantilever into the process piping. They provide process condition protection and a process seal for temperature sensors. As a process fluid passes around the thermowell, low pressure vortices are created on the downstream side in laminar, turbulent, and transitional flow.

The combination of stresses, generated by the static and dynamic in-line drag forces from fluid flow and the dynamic transverse lift forces caused by the alternating vortex shedding, create the potential for fatigue-induced mechanical failures of the thermowell. Piping designers may use a variety of tools to predict and avoid thermowell failures in their systems, but ASME PTC 19.3 TW-2010 is the internationally recognized standard by which thermowells are designed.

Multiple Thermowell Installations Problems

Multi-thermowell installations

Process designers occasionally specify the installation of multiple thermowells for redundancy or 2 out of 3 voting. If they are in close proximity to one another the fluid flow between them is altered. Since ASME PTC 19.3 TW-2010 covers only single thermowell installations, the PTC refers the designer to a portion of the ASME Boiler Pressure Vessel Code rather than deal with the complexity of the interactions between two or more thermowells in the flow.

While this reference provides design guidance for optimization of fluid flow over tube arrays, it leaves the designer without substantial guidance on the effects of the vortex shedding on either the upstream or downstream thermowells. To understand that, peer-reviewed journal articles showing experimental results must be referenced. These experiments cover a variety of cylinder arrays, but the two configurations most applicable to process control installations are “side-by-side” and “tandem”.

Thermowell Orientation

In side-by-side installations the velocity of the fluid increases as it passes between the two thermowells due to the constriction in the flow. With an increase in velocity comes an increase in the vortex shedding rate along with an increase in the forces acting on the thermowells. As the space between the thermowells increases, this effect is reduced.

 tandem thermowell orientation

In tandem thermowell installations the trailing thermowell is either adjacent to or within the vortex street generated by the upstream thermowell. This changes the forces on the leading thermowells and induces additional forces on the trailing thermowell.

In the tandem orientation, only the forces are affected, not the shedding rate since the fluid velocity is unchanged. This means that if the thermowells are designed such that the vortex shedding rate is outside the in-line or transverse lock-in regions they may still be acceptable for use in a tandem installation..

Thermowell Installation

Much of the available experimental data is taken in the “close proximity” region (within 8 cylinder diameters) to generate the most dramatic results. To the process piping designer, the data suggest that when using two or more thermowells in conjunction with one another, the best thermowell installation orientation is side-by-side with at least 5 thermowell diameters spacing between them. However, the geometry of side-by-side installations can be difficult to fabricate and verify. This fact alone might cause the designer to consider tandem orientation.

If the designer chooses the tandem thermowell orientation (because it is easier to fabricate or because there is no other choice) then the spacing between the thermowells must be greater than the distance required for the vortex street to dissipate. This distance varies with fluid density and velocity, but the experimental results show vortices generally decay within 100 thermowell diameters. For typical thermowells of tip diameter 0.50 in. (12.7mm) or 0.75 in. (19.1mm), the center-to-center distance between thermowells would need to be anywhere from 4 to 6 feet (1200 to 1800mm).

Elbows or other in-situ flow disruptions help to dissipate vortices and can reduce the spacing requirements, however this is highly variable and should be evaluated on a case-by-case basis. In the end, only if the vortices can be dissipated through spacing or flow disruptions can the designer use ASME PTC 19.3 TW-2010 to evaluate the thermowell installation.

Article Source: EmersonProcess

Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !

Continue Reading

Level Transmitter and Level Gauge Design Tips
Instrument Air Sizing
30 Concerns for Process Control Systems Philosophy
What’s the problem with shock and vibration ?
Instrumentation Earthing
Thermocouple Temperature Measurement Errors
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
Leave a Comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
210kSubscribersSubscribe
38kFollowersFollow

Categories

Explore More

Normally-Closed Contacts for Stop Buttons
How to Avoid Process Downtime ?
Turbine-Compressor System Architecture
Instrument Tube Fitting Installation – Part 2
Why 4-20 mA Standard is so popular ?
Ferrules and Cross Ferruling
System Architecture and Process Control Systems Philosophy
Pressure Control Valves vs Pressure Regulators

Keep Learning

O Ring Failure

How O-Ring Failure caused NASA’s shuttle to Blast ?

control-valve-actuators

Control Valve Selection Tips

P&ID Guidelines for Storage Tanks

P&ID Guidelines for Storage Tanks

Fixed Type Motor control center (MCC)

Motor Control Center (MCC) Signal Interface Termination (SIT)

Pressure Gauge Design

How to Select a Pressure Gauge

Design Process Control & Safety Systems

Design View of Supplying Process Control and Safety Systems

Instrumentation Cables Armor

Instrumentation Cables Armor

Interface Level Measurement Selection Guide

Interface Level Measurement Selection Guide

Learn More

Two solenoid valves circuit

Solenoid Valves Questions & Answers – 4

SIS System Testing - Safety PLC Control System

SIS System Testing – Safety PLC

Save and BR Memory in Siemens PLC Programming

SAVE and BR Memory Instructions in Siemens PLC Programming

3 Wire RTD Connections

RTD Sensor Connections

Shut down valve

What is Shutdown Valve?

Electrical Machines Questions and Answers

DC Machines Excitation Quiz

Control Valve Failure Rate Calculation

Control Valve Failure Rate Calculation

InTouch SCADA Training Course

Free InTouch SCADA Tutorial Course for Beginners

Menu

  • About
  • Privacy Policy
  • Copyright

Quick Links

  • Learn PLC
  • Helping Hand
  • Part Time Job

YouTube Subscribe

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?