By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
Inst ToolsInst ToolsInst Tools
  • Courses
  • PLC Tutorials
  • Control Systems
Search
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Reading: Fiber Optic Data Communication
Share
Notification Show More
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Courses
  • PLC Tutorials
  • Control Systems
Search
  • Ask
  • Courses
  • Videos
  • Q & A
    • Interview
    • MCQ
  • EE
    • Electronics
    • Electrical
  • Measure
    • Control Valves
    • Calibration
    • Temperature
    • Pressure
    • Flow
    • Level
    • Analyzers
    • Switches
    • Vibration
    • Solenoid Valve
  • Control
    • PLC Tutorials
    • Control Systems
    • Safety Instrumented System (SIS)
    • Communication
    • Fire & Gas System
  • More
    • Design
    • Tools
    • Animation
    • Basics
    • Formulas
    • Standards
    • TextBooks
    • Common
    • Software
    • Excel Tools
    • Erection & Commissioning
    • Process Fundamentals
    • Videos
    • Books
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools > Blog > Communication > Fiber Optic Data Communication

Fiber Optic Data Communication

Last updated: November 14, 2017 10:00 am
Editorial Staff
Communication eBooks
No Comments
Share
7 Min Read
SHARE

An optical fiber is a “pipe” through which light flows. This is, of course, merely an analogy for how an optical fiber works, but it conveys the basic idea. The interface between a piece of electronic equipment and an optical fiber consists of an optical source (typically an LED or a semiconductor laser) to generate light signals from electrical signals, and an optical detector (typically a photodiode or phototransistor) to generate electrical signals from received light signals.

The predominant use of optical fiber in modern industry is as a data communication medium between digital electronic devices, replacing copper-wire signal and network cabling. An illustration showing two digital electronic devices communicating over a pair of optical fibers appears here, each fiber “conducting” pulses of light (representing serial digital data) from an LED source to a photodiode detector:

fiber-optic communication

The following photograph shows a serial converter (the black rectangular plastic box with a blue label) used to convert optical data pulses entering and exiting through orange-jacketed optical cables (on the left) into EIA/TIA-232 compliant electrical signals through a DB-9 connector (on the right) and vice-versa, allowing the electronic serial data device on the right-hand side of the photograph to communicate via fiber optic cabling:

fiber-optic Converter

Note how the two optical fiber ports on the converter body are labeled “R” and “T” for Receive and Transmit, respectively. Serial devices with built-in electronic/optical converters will similarly label their optical ports.

For this device, connection to each of the optical fibers is made using an “ST” style connector, with a quarter-turn locking ring holding each one in place (much like the quarter-turn barrel body of a “BNC” style electrical connector). The next photograph shows a pair of optical fibers terminated with ST-style connectors. White plastic caps cover the connector tips, keeping the glass fiber ends protected from dust and abrasion:

optical fibers terminations

As a data pathway, optical fiber enjoys certain advantages over electrical cable, including:

  • Much greater bandwidth (data-carrying capacity), estimated to be in the terahertz range
  • Much less equivalent signal power loss per unit cable length (less than 1 dB per kilometer compared with 25 dB per kilometer for coaxial cable)
  • Complete immunity to external “noise” sources
  • No radiation of energy or data from the cable, thus will not create interference nor be liable to eavesdropping
  • No electrical conductivity, allowing safe routing of cables near high voltage conductors
  • Total galvanic isolation (i.e. no electrically conductive connection) between data devices, allowing operation at different electrical potentials
  • Safe for use in areas with explosive vapors, dust, and/or fibers

These advantages deserve some elaboration. The superior bandwidth of fiber-optic cable is so dramatic that the present-day limitation on data transfer rates for most fiber-optic installations is the electronic devices at each end, and not the optical fiber itself! This, combined with the low inherent power loss of optical fiber, makes it an ideal medium for long-range data communication such as telephone and internet. Thousands of miles of optical fiber cable have been buried in underground trenches, laid down on sea floors, strung as overhead lines, and used as “patch” cables in room-scale applications since the advent of affordable optical cabling in the 1980’s. The “tech boom” of the 1990’s saw an impressive amount of trans-continental and inter-continental optical fiber installation, paving the way for the global expansion of internet services into the 21st century.

The limitations of electronics at each end of these long fibers means we have not yet begun to tap their full data-carrying capacity, either. Conveying data in photonic – as opposed to electronic – form means there is absolutely no such thing as capacitive or inductive coupling with external systems as there is with conductive wire cable, which not only means optical fiber communication is immune to external interference but also that the optical signals cannot create interference for any other system. Since optical fibers are customarily manufactured from glass which is electrically non-conductive, it is possible to route optical fibers alongside high-voltage power lines, and also connecting together devices at vastly different electrical potentials from each other, with no risk of bridging those differing potentials. Finally, the low power levels associated with optical fiber signals also makes this technology completely safe in areas where explosive compounds in the atmosphere might otherwise be ignited by faults in electrical communications cable.

Optical fibers also suffer from some unique limitations when compared against electrical cable, including:

  • Need to avoid tight bend radii for optical cables
  • Connections need to be extremely clean
  • Specialized tools and skills necessary for installation and maintenance
  • Expensive testing equipment

While electrical “transmission line” signal cables must also avoid sharp bends and other discontinuities caused by cramped installations, this need is especially pronounced for optical fiber (for reasons which will be explained later in this section). Since fiber-to-fiber connections consist of glass pressed against glass, the presence of even microscopic contaminants such as dust particles may damage fiber optic connectors if they aren’t cleaned prior to insertion. Cutting, preparing, and terminating optical fiber cables requires its own set of specialized tools and skills, and is not without unique hazards. Lastly, the test equipment necessary to check the integrity of an optical pathway is similarly specialized and typically quite expensive.

Index & Credits

Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !
Latest ProfiBus Questions and Answers
Temperature Switch Principle
Sanitary Pipe Fittings for the Instruments
Purpose of Gateways, Bridges & Routers in Networking
Industrial Networking and Wireless Interview Questions
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
Leave a Comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
208kSubscribersSubscribe
38kFollowersFollow

Categories

Recent Comments

  • MIHARITSOA Aina Sitraka on Top Non-PLC Certification Courses for Automation Professionals
  • Vaishnavi on Free Instrumentation Course for Trainee Engineers
  • anuj kapoor on DCS Program to Maintain Draft in Furnace
  • anuj kapoor on IoT based Smart Boiler Control System with Cloud PLC and SCADA

Related Articles

Industrial Automation Protocols

Industrial Automation Protocols

HART Multidrop Network

HART Communication Tutorial Part 2

What is a Network

What is a Network ?

Network topologies

Different Types of Network Topologies

Top 10 Facts about HART Technology

What is HART, Foundation Fieldbus & Profibus ?

Important Networking Interview Questions

Important Networking Interview Questions

What is Star Topology

Network Topologies Selection Factors and Comparison

Fieldbus Control Loop

Foundation Fieldbus Communication Management

More Articles

Control system architecture diagrams

Vendor Document for Project Systems Architecture

vortex flow transmitter

What is a Vortex Flow Meter?

Networking Interview Questions

Top 100 Networking Interview Questions & Answers

PLC Program to control level of parallel tanks

Parallel Tanks Level Control using PLC Ladder Diagram Tutorial

Flame Detectors Working Principle

Flame Detectors Working Principle

Pump Mechanical Seal and thrust bearing Problem

Pump 3-monthly Seal Leaks threaten entire Plant Shut down Indefinitely

Electric Motors Noises

Electric Motors Noises – Types, Possible Sources, Reasons

Downloading Free PLC software

Step by Step Guidelines for Downloading Free PLC software

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?